Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pretzel knots of length three with unknotting number one

    Thumbnail
    Date
    2012-05
    Author
    Staron, Eric Joseph
    Metadata
    Show full item record
    Abstract
    This thesis provides a partial classification of all 3-stranded pretzel knots K=P(p,q,r) with unknotting number one. Scharlemann-Thompson, and independently Kobayashi, have completely classified those knots with unknotting number one when p, q, and r are all odd. In the case where p=2m, we use the signature obstruction to greatly limit the number of 3-stranded pretzel knots which may have unknotting number one. In Chapter 3 we use Greene's strengthening of Donaldson's Diagonalization theorem to determine precisely which pretzel knots of the form P(2m,k,-k-2) have unknotting number one, where m is an integer, m>0, and k>0, k odd. In Chapter 4 we use Donaldson's Diagonalization theorem as well as an unknotting obstruction due to Ozsv\'ath and Szab\'o to partially classify which pretzel knots P(2,k,-k) have unknotting number one, where k>0, odd. The Ozsv\'ath-Szab\'o obstruction is a consequence of Heegaard Floer homology. Finally in Chapter 5 we explain why the techniques used in this paper cannot be used on the remaining cases.
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-05-5055
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV