Circuit design and device modeling of zinc-tin oxide TFTs

Date

2011-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Amorphous Oxide Semiconductors (AOS) are widely being explored in the field of flexible and transparent electronics. In this thesis, solution processed zinc-tin oxide (ZTO) n-channel TFT based circuits are studied. Inverters, single stage amplifiers and ring oscillators are designed, fabricated and tested. 7-stage ring oscillators with output frequencies up to 106kHz and 5-stage ring oscillators with frequencies up to 75kHz are reported. A stable three stage op-amp with a buffered output is designed for a gain of 39.9dB with a unity gain frequency of 27.7kHz. A 7-stage ring oscillator with output frequency close to 1MHz is simulated and designed. The op-amp and the ring oscillator are ready to be fabricated and tested. An RPI model for a-Si, adapted to fit the ZTO device characteristics, is used for simulation. Development of a new model based on the physics behind charge transport in ZTO devices is explored. An expression for gate bias dependent mobility in ZTO devices is derived.

Description

text

Citation