# Browsing by Subject "Wireless Sensor Networks"

Now showing 1 - 11 of 11

###### Results Per Page

###### Sort Options

Item Challenges and Solutions for Location-based Routing in Wireless Sensor Networks with Complex Network Topology(2013-07-17) Won, MyounggyuShow more Complex Network Topologies (CNTs)?network holes and cuts?often occur in practical WSN deployments. Many researchers have acknowledged that CNTs adversely affect the performance of location-based routing and proposed various CNT- aware location-based routing protocols. However, although they aim to address practical issues caused by CNTs, many proposed protocols are either based on idealistic assumptions, require too much resources, or have poor performance. Additionally, proposed protocols are designed only for a single routing primitive?either unicast, multicast, or convergecast. However, as recent WSN applications require diverse traffic patterns, the need for an uni?ed routing framework has ever increased. In this dissertation, we address these main weaknesses in the research on location- based routing. We ?rst propose efficient algorithms for detecting and abstracting CNTs in the network. Using these algorithms, we present our CNT-aware location- based unicast routing protocol that achieves the guaranteed small path stretch with signi?cantly reduced communication overhead. We then present our location-based multicast routing protocol that ?nds near optimal routing paths from a source node to multicast member nodes, with efficient mechanisms for controllable packet header size and energy-efficient recovery from packet losses. Our CNT-aware convergecast routing protocol improves the network lifetime by identifying network regions with concentrated network traffic and distributing the traffic by using the novel concept of virtual boundaries. Finally, we present the design and implementation details of our uni?ed routing framework that seamlessly integrates proposed unicast, multicast, and convergecast routing protocols. Speci?cally, we discuss the issues regarding the implementation of our routing protocols on real hardware, and the design of the framework that signi?cantly reduces the code and memory size to ?t in a resource constrained sensor mote. We conclude with a proactive solution designed to cope with CNTs, where mobile nodes are used for ?patching? CNTs to restore the network connectivity and to optimize the network performance.Show more Item Efficient multi-resolution data dissemination in wireless sensor networks(Texas A&M University, 2005-11-01) Chen, JianShow more A large-scale distributed wireless sensor network is composed of a large collection of small low-power, unattended sensing devices equipped with limited memory, processors, and short-range wireless communication. The network is capable of controlling and monitoring ambient conditions, such as temperature, movement, sound, light and others, and thus enable smart environments. Energy efficient data dissemination is one of the fundamental services in large-scale wireless sensor networks. Based on the study of the data dissemination problem, we propose two efficient data dissemination schemes for two categories of applications in large-scale wireless sensor networks. In addition, our schemes provide spatial-based multi-resolution data dissemination for some applications to achieve further energy efficiency. Analysis and simulation results are given to show the performance of our schemes in comparison with current techniques.Show more Item Estimation of clock parameters and performance benchmarks for synchronization in wireless sensor networks(2009-05-15) Chaudhari, Qasim MahmoodShow more Recent years have seen a tremendous growth in the development of small sensing devices capable of data processing and wireless communication through their embed- ded processors and radios. Wireless Sensor Networks (WSNs) are ad hoc networks consisting of such devices gaining importance due to their emerging applications. For a meaningful processing of the information sensed by WSN nodes, the clocks of these individual nodes need to be matched through some well de?ned procedures. This dissertation focuses on deriving e?cient estimators for the clock parameters of the network nodes for synchronization with the reference node and the estimators variance thresholds are obtained to lower bound the maximum achievable performance. For any general time synchronization protocol involving a two way message ex- change mechanism, the BLUE-OS and the MVUE of the clock o?set between them is derived assuming both symmetric and asymmetric exponential network delays. Next, with the inclusion of clock skew in the model, the joint MLE of clock o?set and skew under both the Gaussian and the exponential delay model and the corresponding al- gorithms for ?nding these estimates are presented. Also, for applications where even clock skew correction cannot maintain long-term clock synchronization, a closed-form expression for the joint MLE for a quadratic model is obtained. Although the derived MLEs are not computationally very complex, two compu- tationally e?cient algorithms have been proposed to estimate the clock o?set and skew regardless of the distribution of the delays. Afterwards, extending the idea of having inactive nodes in a WSN overhear the two-way timing message communication between two active (master and slave) nodes, the MLE, the BLUE-OS, the MVUE and the MMSE estimators for the clock o?sets of the inactive nodes located within the communication range of the active nodes are derived, hence synchronizing with the reference node at a reduced cost. Finally, focusing on the the one-way timing exchange mechanism, the joint MLE for clock phase o?set and skew under exponential noise model and the Gibbs Sampler for a receiver-receiver protocol is formulated and found via a direct algorithm. Lower and upper bounds for the MSE of JMLE and Gibbs Sampler are introduced in terms of the MSEs of the MVUE and the conventional BLUE, respectively.Show more Item Joint synchronization of clock phase offset, skew and drift in reference broadcast synchronization (RBS) protocol(2009-06-02) Sari, IlkayShow more Time-synchronization in wireless ad-hoc sensor networks is a crucial piece of infrastructure. Thus, it is a fundamental design problem to have a good clock syn- chronization amongst the nodes of wireless ad-hoc sensor networks. Motivated by this fact, in this thesis, the joint maximum likelihood (JML) estimator for relative clock phase offset and skew under the exponential noise model for the reference broadcast synchronization protocol is formulated and found via a direct algorithm. The Gibbs Sampler is also proposed for joint estimation of relative clock phase offset and skew, and shown to provide superior performance compared to the JML-estimator. Lower and upper bounds for the mean-square errors (MSE) of the JML-estimator and the Gibbs Sampler are introduced in terms of the MSE of the uniform minimum variance unbiased estimator and the conventional best linear unbiased estimator, respectively. The suitability of the Gibbs Sampler for estimating additional unknown parameters is shown by applying it to the problem in which synchronization of clock drift is also needed.Show more Item Models and Solution Approaches for Efficient Design and Operation of Wireless Sensor Networks(2010-11-11) Lin, Hui 1981-Show more Recent advancements in sensory devices are presenting various opportunities for widespread applications of wireless sensor networks (WSNs). The most distinguishing characteristic of a WSN is the fact that its sensors have nite and non-renewable energy resources. Many research e orts aim at developing energy e cient network topology and routing schemes for prolonging the network lifetime. However, we notice that, in the majority of the literature, topology control and routing problems are handled separately, thus overlooking the interrelationships among them. In this dissertation, we consider an integrated topology control and routing problem in WSNs which are unique type of data gathering networks characterized by limited energy resources at the sensor nodes distributed over the network. We suggest an underlying hierarchical topology and routing structure that aims to achieve the most prolonged network lifetime via e cient use of limited energy resources and addressing operational speci cities of WSNs such as communication-computation trade-o , data aggregation, and multi-hop data transfer for better energy e ciency. We develop and examine three di erent objectives and their associated mathematical models that de- ne alternative policies to be employed in each period of a deployment cycle for the purpose of maximizing the number of periods so that the network lifetime is prolonged. On the methodology side, we develop e ective solution approaches that are based on decomposition techniques, heuristics and parallel heuristic algorithms. Furthermore, we devise visualization tools to support our optimization e orts and demonstrate that visualization can be very helpful in solving larger and realistic problems with dynamic nature. This dissertation research provides novel analytical models and solution methodologies for important practical problems in WSNs. The solution algorithms developed herein will also contribute to the generalized mixed-discrete optimization problem, especially for the problems with similar characteristics.Show more Item New advances in designing energy efficient time synchronization schemes for wireless sensor networks(2009-05-15) Noh, Kyoung LaeShow more Time synchronization in wireless sensor networks (WSNs) is essential and significant for maintaining data consistency, coordination, and performing other fundamental operations, such as power management, security, and localization. Energy efficiency is the main concern in designing time synchronization protocols for WSNs because of the limited and generally nonrechargeable power resources. In this dissertation, the problem of time synchronization is studied in three different aspects to achieve energy efficient time synchronization in WSNs. First, a family of novel joint clock offset and skew estimators, based on the classical two-way message exchange model, is developed for time synchronization in WSNs. The proposed joint clock offset and skew correction mechanisms significantly increase the period of time synchronization, which is a critical factor in the over-all energy consumption required for global network synchronization. Moreover, the Cramer-Rao bounds for the maximum likelihood estimators are derived under two different delay assumptions. These analytical metrics serve as good benchmarks for the experimental results thus far reported. Second, this dissertation proposes a new time synchronization protocol, called the Pairwise Broadcast Synchronization (PBS), which aims at minimizing the number of message transmissions and implicitly the energy consumption necessary for global synchronization of WSNs. A novel approach for time synchronization is adopted in PBS, where a group of sensor nodes are synchronized by only overhearing the timing messages of a pair of sensor nodes. PBS requires a far smaller number of timing messages than other well-known protocols and incurs no loss in synchronization accuracy. Moreover, for densely deployed WSNs, PBS presents significant energy saving. Finally, this dissertation introduces a novel adaptive time synchronization protocol, named the Adaptive Multi-hop Timing Synchronization (AMTS). According to the current network status, AMTS optimizes crucial network parameters considering the energy efficiency of time synchronization. AMTS exhibits significant benefits in terms of energy-efficiency, and can be applied to various types of sensor network applications having different requirements.Show more Item Parameter assignment for improved connectivity and security in randomly deployed wireless sensor networks via hybrid omni/uni-directional antennas(2009-05-15) Shankar, SonuShow more Conguring a network system to operate at optimal levels of performance re-quires a comprehensive understanding of the eects of a variety of system parameterson crucial metrics like connectivity and resilience to network attacks. Traditionally,omni-directional antennas have been used for communication in wireless sensor net-works. In this thesis, a hybrid communication model is presented where-in, nodes ina network are capable of both omni-directional and uni-directional communication.The eect of such a model on performance in randomly deployed wireless sensor net-works is studied, specically looking at the eect of a variety of network parameterson network performance.The work in this thesis demonstrates that, when the hybrid communication modelis employed, the probability of 100% connectivity improves by almost 90% and thatof k-connectivity improves by almost 80% even at low node densities when comparedto the traditional omni-directional model. In terms of network security, it was foundthat the hybrid approach improves network resilience to the collision attack by almost85% and the cost of launching a successful network partition attack was increased byas high as 600%. The gains in connectivity and resilience were found to improve withincreasing node densities and decreasing antenna beamwidths.Show more Item Robust Clock Synchronization in Wireless Sensor Networks(2010-10-12) Saibua, SawinShow more Clock synchronization between any two nodes in a Wireless Sensor Network (WSNs) is generally accomplished through exchanging messages and adjusting clock offset and skew parameters of each node?s clock. To cope with unknown network message delays, the clock offset and skew estimation schemes have to be reliable and robust in order to attain long-term synchronization and save energy. A joint clock offset and skew estimation scheme is studied and developed based on the Gaussian Mixture Kalman Particle Filter (GMKPF). The proposed estimation scheme is shown to be a more flexible alternative than the Gaussian Maximum Likelihood Estimator (GMLE) and the Exponential Maximum Likelihood Estimator (EMLE), and to be a robust estimation scheme in the presence of non-Gaussian/nonexponential random delays. This study also includes a sub optimal method called Maximum Likelihood-like Estimator (MLLE) for Gaussian and exponential delays. The computer simulations illustrate that the scheme based on GMKPF yields better results in terms of Mean Square Error (MSE) relative to GMLE, EMLE, GMLLE, and EMLLE, when the network delays are modeled as non-Gaussian/non-exponential distributions or as a mixture of several distributions.Show more Item Robust Clock Synchronization Methods for Wireless Sensor Networks(2011-10-21) Lee, Jae HanShow more Wireless sensor networks (WSNs) have received huge attention during the recent years due to their applications in a large number of areas such as environmental monitoring, health and traffic monitoring, surveillance and tracking, and monitoring and control of factories and home appliances. Also, the rapid developments in the micro electro-mechanical systems (MEMS) technology and circuit design lead to a faster spread and adoption of WSNs. Wireless sensor networks consist of a number of nodes featured in general with energy-limited sensors capable of collecting, processing and transmitting information across short distances. Clock synchronization plays an important role in designing, implementing, and operating wireless sensor networks, and it is essential in ensuring a meaningful information processing order for the data collected by the nodes. Because the timing message exchanges between different nodes are affected by unknown possibly time-varying network delay distributions, the estimation of clock offset parameters represents a challenge. This dissertation presents several robust estimation approaches of the clock offset parameters necessary for time synchronization of WSNs via the two-way message exchange mechanism. In this dissertation the main emphasis will be put on building clock phase offset estimators robust with respect to the unknown network delay distributions. Under the assumption that the delay characteristics of the uplink and the downlink are asymmetric, the clock offset estimation method using the bootstrap bias correction approach is derived. Also, the clock offset estimator using the robust Mestimation technique is presented assuming that one underlying delay distribution is mixed with another delay distribution. Next, although computationally complex, several novel, efficient, and robust estimators of clock offset based on the particle filtering technique are proposed to cope with the Gaussian or non-Gaussian delay characteristics of the underlying networks. One is the Gaussian mixture Kalman particle filter (GMKPF) method. Another is the composite particle filter (CPF) approach viewed as a composition between the Gaussian sum particle filter and the KF. Additionally, the CPF using bootstrap sampling is also presented. Finally, the iterative Gaussian mixture Kalman particle filter (IGMKPF) scheme, combining the GMKPF with a procedure for noise density estimation via an iterative mechanism, is proposed.Show more Item Timing Synchronization and Node Localization in Wireless Sensor Networks: Efficient Estimation Approaches and Performance Bounds(2012-11-05) Ahmad, Aitzaz 1984-Show more Wireless sensor networks (WSNs) consist of a large number of sensor nodes, capable of on-board sensing and data processing, that are employed to observe some phenomenon of interest. With their desirable properties of flexible deployment, resistance to harsh environment and lower implementation cost, WSNs envisage a plethora of applications in diverse areas such as industrial process control, battle- field surveillance, health monitoring, and target localization and tracking. Much of the sensing and communication paradigm in WSNs involves ensuring power efficient transmission and finding scalable algorithms that can deliver the desired performance objectives while minimizing overall energy utilization. Since power is primarily consumed in radio transmissions delivering timing information, clock synchronization represents an indispensable requirement to boost network lifetime. This dissertation focuses on deriving efficient estimators and performance bounds for the clock parameters in a classical frequentist inference approach as well as in a Bayesian estimation framework. A unified approach to the maximum likelihood (ML) estimation of clock offset is presented for different network delay distributions. This constitutes an analytical alternative to prior works which rely on a graphical maximization of the likelihood function. In order to capture the imperfections in node oscillators, which may render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed by using factor graphs. Message passing using the max-product algorithm yields an exact expression for the Bayesian inference problem. This extends the current literature to cases where the clock offset is not deterministic, but is in fact a random process. A natural extension of pairwise synchronization is to develop algorithms for the more challenging case of network-wide synchronization. Assuming exponentially distributed random delays, a network-wide clock synchronization algorithm is proposed using a factor graph representation of the network. Message passing using the max- product algorithm is adopted to derive the update rules for the proposed iterative procedure. A closed form solution is obtained for each node's belief about its clock offset at each iteration. Identifying the close connections between the problems of node localization and clock synchronization, we also address in this dissertation the problem of joint estimation of an unknown node's location and clock parameters by incorporating the effect of imperfections in node oscillators. In order to alleviate the computational complexity associated with the optimal maximum a-posteriori estimator, two iterative approaches are proposed as simpler alternatives. The first approach utilizes an Expectation-Maximization (EM) based algorithm which iteratively estimates the clock parameters and the location of the unknown node. The EM algorithm is further simplified by a non-linear processing of the data to obtain a closed form solution of the location estimation problem using the least squares (LS) approach. The performance of the estimation algorithms is benchmarked by deriving the Hybrid Cramer-Rao lower bound (HCRB) on the mean square error (MSE) of the estimators. We also derive theoretical lower bounds on the MSE of an estimator in a classical frequentist inference approach as well as in a Bayesian estimation framework when the likelihood function is an arbitrary member of the exponential family. The lower bounds not only serve to compare various estimators in our work, but can also be useful in their own right in parameter estimation theory.Show more Item Topology management protocols in ad hoc wireless sensor networks(2009-05-15) Kim, HogilShow more A wireless sensor network (WSN) is comprised of a few hundred or thousand au-tonomous sensor nodes spatially distributed over a particular region. Each sensornode is equipped with a wireless communication device, a small microprocessor, anda battery-powered energy source. Typically, the applications of WSNs such as habitatmonitoring, re detection, and military surveillance, require data collection, process-ing, and transmission among the sensor nodes. Due to their energy constraints andhostile environments, the main challenge in the research of WSN lies in prolongingthe lifetime of WSNs.In this dissertation, we present four dierent topology management protocols forK-coverage and load balancing to prolong the lifetime of WSNs.First, we present a Randomly Ordered Activation and Layering (ROAL) protocolfor K-coverage in a stationary WSN. The ROAL suggests a new model of layer cov-erage that can construct a K-covered WSN using the layer information received fromits previously activated nodes in the sensing distance. Second, we enhance the faulttolerance of layer coverage through a Circulation-ROAL (C-ROAL) protocol. Us-ing the layer number, the C-ROAL can activate each node in a round-robin fashionduring a predened period while conserving reconguration energy. Next, MobilityResilient Coverage Control (MRCC) is presented to assure K-coverage in the presence of mobility, in which a more practical and reliable model for K-coverage with nodalmobility is introduced. Finally, we present a Multiple-Connected Dominating Set(MCDS) protocol that can balance the network trac using an on-demand routingprotocol. The MCDS protocol constructs and manages multiple backbone networks,each of which is constructed with a connected dominating set (CDS) to ensure a con-nected backbone network. We describe each protocol, and compare the performanceof our protocols with Dynamic Source Routing (DSR) and/or existing K-coveragealgorithms through extensive simulations.The simulation results obtained by the ROAL protocol show that K-coverage canbe guaranteed with more than 95% coverage ratio, and signicantly extend networklifetime against a given WSN. We also observe that the C-ROAL protocol provides abetter reconguration method, which consumes only less than 1% of the recongura-tion energy in the ROAL protocol, with a greatly reduced packet latency. The MRCCprotocol, considering the mobility, achieves better coverage by 1.4% with 22% feweractive sensors than that of an existing coverage protocol for the mobility. The resultson the MCDS protocol show that the energy depletion ratio of nodes is decreasedconsequently, while the network throughput is improved by 35%.Show more