Anti-capillary barrier performance of wicking geotextiles

Date

2012-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A capillary barrier develops and restricts water flow when two porous materials with dissimilar pore structures (e.g., a coarse-grained soil overlain by a fine-grained soil) are in contact with one another. This is due to a difference in the unsaturated hydraulic conductivity of the two materials at a given suction. Geotextiles are utilized in a variety of civil engineering applications and have a pore structure similar to that of a coarse-grained soil. This can be problematic in unsaturated soil as the capillary barrier caused by the geotextile may instigate undesirable moisture buildup in the overlying soil and undermine any benefit provided by the geotextile.
Various versions of a new geotextile have been manufactured to help dissipate a capillary barrier by "wicking" or laterally draining excess moisture away from the soil. Additionally, nonwoven blends of the unique wicking fiber combined with standard polymeric fibers are tested to assess their ability to minimize the development of a geotextile capillary barrier and not cause additional moisture accumulation in the first place. The unsaturated properties of both woven and nonwoven configurations of these wicking geotextiles were investigated as part of a comprehensive an experimental testing program. The testing program includes small soil column infiltration tests to assess geotextile capillary barrier performance with moisture monitored by time domain reflectometers and capacitance probes. Also, modified hanging column tests were conducted to define the hydraulic properties of the geotextiles in the form of water retention curves. Finally, a microscopy study, involving both optical and scanning electron microscopes, was conducted to observe the wicking behavior of the geotextiles at a micro-scale level. Test results illustrate the enhanced lateral drainage and reduced moisture accumulation of the wicking geotextiles when compared to regular geotextiles. Additionally, the woven version of the wicking geotextile has the potential to perform the functions of separation, filtration, protection, reinforcement, and drainage. All of these functions in a single geosynthetic product could lead to significant cost savings compared to the use of separate products to perform each one of the various functions.

Description

text

Citation