Hydrodynamic optimization and design of marine current turbines and propellers

dc.contributor.advisorKinnas, Spyros A.
dc.creatorMenéndez Arán, David Hernánen
dc.date.accessioned2013-10-09T15:12:01Zen
dc.date.accessioned2017-05-11T22:34:27Z
dc.date.available2017-05-11T22:34:27Z
dc.date.issued2013-08en
dc.date.submittedAugust 2013en
dc.date.updated2013-10-09T15:12:01Zen
dc.descriptiontexten
dc.description.abstractThis thesis addresses the optimization and design of turbine and propeller blades through the use of a lifting line model. An existing turbine optimization methodology has been modified to include viscous terms, non-linear terms, and a hub model. The method is also adapted to the optimization of propellers. Two types of trailing wake geometries are considered: one based on helical wakes which are aligned at the blade (using the so-called "moderately loaded propeller'' assumption), and a second one based on a full wake alignment model in order to represent more accurately the wake geometry and its effect on the efficiency of the rotor. A comparison of the efficiencies and the loading distributions obtained through the present methods is presented, as well as convergence and numerical accuracy studies, and comparisons with existing analytical results. In the case of turbines, various types of constraints are imposed in the optimization method in order to avoid abrupt changes in the designed blade shape. The effect of the constraints on the efficiency of the turbines is studied. Once the optimum loading has been determined, the blade geometry is generated for given chord, thickness and camber distributions. Finally, a low-order potential-based boundary element method and a vortex-lattice method are used to verify the efficiency of the designed turbines.en
dc.description.departmentEnvironmental and Water Resources Engineeringen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/21497en
dc.language.isoen_USen
dc.subjectTurbineen
dc.subjectPropelleren
dc.subjectOptimizationen
dc.subjectDesignen
dc.subjectTidalen
dc.subjectMarineen
dc.subjectRenewable energyen
dc.subjectHydrokineticen
dc.titleHydrodynamic optimization and design of marine current turbines and propellersen

Files