Real-time impluse-based rigid body simulation and rendering
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The purpose of this thesis is to develop and demonstrate a physically based rigid body simulation with a focus on simplifications to achieve real-time performance. This thesis aims to demonstrate that by improving the efficiency with simplified calculations of possible bottlenecks of a real-time rigid body simulation, the accuracy can be improved. A prototype simulation framework is implemented to evaluate the simplifications. Finally, various real-time rendering features are implemented to achieve a realistic look, and also to imitate the game-like environment where real-time rigid body simulations are mostly utilized. A series of demonstration experiments are used to show that our simulator does, in fact, achieve real-time performance, while maintaining satisfactory accuracy. A direct comparison of this prototype with a commercially available simulator verifies that the simplified approach improves the efficiency and does not damage the accuracy under our test conditions. Integration of rendering elements like advanced shading, shadowing, depth of field and motion blur into our real-time framework also enhanced the perception of simulation outcomes.