Validation of chemical and non-chemical antimicrobial interventions applied pre- and post-chilling to reduce microbial populations in broiler carcasses



Journal Title

Journal ISSN

Volume Title



Higher risks of food-borne illness associated with increased consumption of poultry products make it necessary to identify potential sources of contamination and apply intervention strategies that will prevent or minimize the risk of contamination during processing. This study investigated the effects of chemical and natural decontamination treatments including sprayed application of acidified calcium sulfate (ACS) in combination with -polylysine (EPL), dry-rubbing kosher salt coating and molten paraffin wax dipping application on microbial populations of broiler carcasses and parts. Treatments were evaluated for their effectiveness in reducing the numbers of artificially inoculated rifampicin resistant Salmonella Typhimurium strain NVSL 95-1776 on the skin surface of bone-in chicken breasts. General model procedures were used to find statistical differences (P<0.05) and separation of means was done with least square means using SAS 9.1. Chemical interventions (ACS + EPL) caused an overall reduction of ~0.65 CFU/ml of rifampicin resistant Salmonella Typhimurium populations in inoculated chicken breasts. Similar reductions were observed in validation experiments in whole carcasses when compared to post-eviscerated control samples as well as post chilled treated samples when compared to post-chill controls. Kosher salt interventions caused ~1.15 CFU/ml log reductions in rifampicin resistant Salmonella Typhimurium loads. Significant differences (>2 log reductions) were also observed in validation trials in both pre- and post-chilled samples when compared to non-treated pre- and post-chilled controls. Only for psychrotrophic counts, chilled and post-chill interventions did not have a significant effect (P>0.05). The use of molten paraffin wax caused <0.51 CFU/ml log reductions on rifampicin resistant Salmonella Typhimurium in chicken breasts. In addition, drip loss on kosher treated samples was 53.8% lower than non-treated counterparts. However, kosher salt application caused a decrease in lightness (*L values) and yellowness (*b values) on treated carcasses when compared to controls, redness (*a values) were not significantly affected. Results indicate that the combined use of ACS and EPL at the stated conditions and the coating application of kosher salt on broiler carcasses significantly reduce pathogen contamination and microbial indicator loads, thus providing an alternative validated antimicrobial intervention for potential use by the poultry industry.