Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems



Journal Title

Journal ISSN

Volume Title



Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small number of analytical models and published numerical studies there is currently little consensus regarding the large-scale flow behavior over time in such systems. The purpose of this work is to construct a fit-for-purpose numerical simulator which will account for a variety of production features pertinent to these systems, and to use this model to study the effects of various parameters on flow behavior. Specific features examined in this work include hydraulically fractured horizontal wells, multiple porosity and permeability fields, desorption, and micro-scale flow effects. The theoretical basis of the model is described in Chapter I, along with a validation of the model. We employ the numerical simulator to examine various tight gas and shale gas systems and to illustrate and define the various flow regimes which progressively occur over time. We visualize the flow regimes using both specialized plots of rate and pressure functions, as well as high-resolution maps of pressure distributions. The results of this study are described in Chapter II. We use pressure maps to illustrate the initial linear flow into the hydraulic fractures in a tight gas system, transitioning to compound formation linear flow, and then into elliptical flow. We show that flow behavior is dominated by the fracture configuration due to the extremely low permeability of shale. We also explore the possible effect of microscale flow effects on gas effective permeability and subsequent gas species fractionation. We examine the interaction of sorptive diffusion and Knudsen diffusion. We show that microscale porous media can result in a compositional shift in produced gas concentration without the presence of adsorbed gas. The development and implementation of the micro-flow model is documented in Chapter III. This work expands our understanding of flow behavior in tight gas and shale gas systems, where such an understanding may ultimately be used to estimate reservoir properties and reserves in these types of reservoirs.