Measuring Frac-pack Conductivity at Reservoir Temperature and High Closure Stress

Date

2010-10-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Ultra-deepwater reservoirs are important non-conventional reservoirs that hold the potential to produce billions of barrels of hydrocarbons but present major challenges. Hydraulic fracturing or frac-packing high permeability reservoirs is different from the conventional hydraulic fracturing technology used in low permeability formations. While the main purpose of the conventional technique is to create a long, highly conductive path, frac-packing on the other hand is used predominantly to get past near wellbore formation damage, control sand production and reduce near wellbore pressure drop. Ultra-deepwater reservoirs are usually high temperature and high pressure with high permeabilities. Frac-packing these types of wells requires short fractures packed with high proppant concentrations. Understanding the behavior of the fracture fluid and proppant is critical to pump such a job successfully and to ensure long term productivity from the fracture. A series of laboratory experiments have been conducted to research the different problems resulting from high temperature and pressure which negatively affect conductivity. Unlike conventional long-term conductivity measurements, we placed the proppant into the fracture and pumped fracture fluid through it and then measured conductivity by pumping oil to represent true reservoir conditions. Proppant performance and fracture fluids clean-up during production were examined. High strength proppant is ideal for deep fracture stimulations and in this study different proppant loadings at different stresses were tested to measure the impact of crushing and embedment on conductivity. The preliminary test results indicated that oil at reservoir conditions does improve clean-up of fracture fluid left back in the proppant pack. Increasing the proppant concentration in the fracture showed higher conductivity values even at high closure stress. The increase in effective closure stress with high temperature yielded significant loss in conductivity values as compared to those obtained from industry tests.

Description

Keywords

Citation