Novel roles of the proteins Oskar and Bluestreak in germ cell formation and migration



Journal Title

Journal ISSN

Volume Title



The formation of germ cells in Drosophila melanogaster is dependent on the presence of ribonucleoprotein complexes called polar granules. A key component of these complexes is Oskar, a novel protein which has been shown to nucleate the granules. To investigate whether Oskar plays a further role in polar granule formation, I cloned the oskar gene from D. immigrans flies (osk[superscript imm]) and introduced it into D. melanogaster flies using P-element transformation. I found that osk[superscript imm] was able to rescue both the posterior patterning and germ cell formation defects of embryos from oskar mutant mothers. In addition, I found that the polar granules of embryos containing only Osk[superscript imm] as a source of Oskar protein resemble those found in D. immigrans embryos, indicating a new role for Oskar in determining the morphology of the polar granules. Germ cell formation in Drosophila is succeeded by migration of the germ cells to the site of gonad formation. A second line of research presented in this dissertation describes analysis of a novel protein important for both germ cell formation and migration, Bluestreak (Blue). Embryos from either heterozygous or homozygous Blue-mothers display defects in germ cell number and shape. I found that the ovaries of Blue-females have defects in the localization of Staufen and Oskar, sufficient to cause a reduction in pole cell number in embryos. In addition, genetic analysis of the interaction between Bluestreak and mutants which affect pole cell migration implicates Bluestreak in this process. Finally, I found that Blue localizes to centrosomes along with [gamma]-tubulin throughout the embryo, and to the nuclear membrane in pole cells. My findings introduce the possibility that Bluestreak may act to regulate germ cell migration in Drosophila.