Radar deception through phantom track generation



Journal Title

Journal ISSN

Volume Title


Texas A&M University


This thesis presents a control algorithm to be used by a team of ECAVs (Electronic Combat Air Vehicle) to deceive a network of radars through the generation of a phantom track. Each ECAV has the electronic capability of intercepting and introducing an appropriate time delay to a transmitted pulse of a radar before transmitting it back to the radar, thereby deceiving the radar into seeing a phantom target at a range beyond that of the ECAV. A radar network correlates targets and target tracks to detect range delay based deception. A team of cooperating ECAVs, however, precisely plans their trajectories in a way all the radars in the radar network are deceived into seeing the same phantom. Since each radar in the network confirms the target track of the other, the phantom track is considered valid. An important feature of the algorithm achieving this is that it translates kinematic constraints on the ECAV dynamic system into constraints on the phantom point. The phantom track between two specified way points then evolves without violating any of the system constraints. The evolving phantom track in turn generates the actual controls on the ECAVs so that ECAVs have flyable trajectories. The algorithms give feasible but suboptimal solutions. The main objectives are algorithm development for phantom track generation through a team of cooperating ECAVs, development of the algorithms to be finite dimensional searches and determining necessary conditions for feasible solutions in the immediate horizon of the searches of the algorithm. Feasibility of the algorithm in deceiving a radar network through phantom track generation is demonstrated through simulation results.