Time series study of urban rainfall suppression during clean-up periods
Abstract
The effect on urban rainfall of pollution aerosols is studied both by data analysis and computational simulation. Our study examines data for urban areas undergoing decadal clean-up. We compare the annual precipitation between polluted sites and relatively clean sites through the time range before and during their clean-up periods to see how the air quality may affect the precipitation amount. By comparing the annual precipitation amount between two polluted sites with different elevations we demonstrate the role that elevation may play in rainfall suppression. Based on the data we collected, we built a model to analyze the relationship between air pollution aerosols and precipitation. Finally, we used a model of time dependent condensational aerosol growth to numerically study the relationship of air pollution aerosols and precipitation amount. Based on these results, we found a negative relationship of precipitation amount and air pollution amount; also, the simulation results clearly demonstrated that too many air pollution particles will deplete the water vapor and suppress further growth of condensation nuclei (CN) toward cloud condensation nuclei (CNN). This study supported the theoretical explanation on why air pollution could suppress urban rainfall.