Beam-Enabled Acoustic Link Establishment (BEALE) for underwater acoustic networks

dc.contributor.advisorNettles, Scott M.
dc.creatorWatkins, Karen Piecaraen
dc.date.accessioned2013-10-31T16:59:45Zen
dc.date.accessioned2017-05-11T22:35:39Z
dc.date.available2017-05-11T22:35:39Z
dc.date.issued2013-05en
dc.date.submittedMay 2013en
dc.date.updated2013-10-31T16:59:45Zen
dc.descriptiontexten
dc.description.abstractThere is growing interest in developing reliable, high performance, underwater acoustic networks (UWANs). However, the acoustic communication channel, with its slow sound propagation, high signal attenuation, and low bandwidth, presents significant challenges to network designers. One advantage offered by the acoustic channel is the ability to form directional communication beams, which improve signal strength and reduce interference. The work presented here describes a novel medium access control protocol for UWANs designated Beam-Enabled Acoustic Link Establishment (BEALE). BEALE addresses the inherent challenges of the acoustic channel by incorporating two techniques: link-level scheduling and dynamic directional beam steering. BEALE neighbors exchange packets based on a link-level schedule negotiated between the two nodes. This scheduling allows nodes to steer transmit and receive beams in the appropriate direction at the appropriate time while minimizing control overhead. Using steered, directional beams increases the gain between sender and receiver, reduces the senders interference with other nodes, and, at the receiver, rejects possible interference from other nodes and noise sources common in the ocean, resulting in increased spatial reuse. The core protocol has been modeled in a UWAN simulator developed specifically for this research. The results demonstrate significant improvement in throughput and packet loss over two benchmark UWAN random access protocols when evaluated over a variety of spatial node topologies and traffic patterns. The core BEALE protocol is further enhanced herein by a Half-Duplex Sliding Window algorithm. The HDX Sliding window is shown through point-to-point simulation to markedly improve bandwidth utilization and error rate in large Bandwidth Delay Product (BDP) situations. Extension of the HDX Sliding Window to more complex multi-flow, two-way and multi-hop cases requires an additional level of communication coordination provided by the BEALE Sliding Window Scheduler presented here. The functional challenges and novel concept of the scheduler are described in detail. The BEALE protocol performance promotes a rich list of potential future research, such as rigorous characterization of the BEALE Sliding Window Scheduler, BEALE accommodation of mobile nodes, conceptual operability of a BEALE-enabled network of a central multi-beam sink node supporting large numbers of simple source nodes, and rate adaptation.en
dc.description.departmentElectrical and Computer Engineeringen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/21867en
dc.language.isoen_USen
dc.subjectUnderwater acoustic networksen
dc.subjectCommunication networksen
dc.subjectMedium access control (MAC)en
dc.subjectBeamformingen
dc.subjectDirectional beamsen
dc.subjectLink-level schedulingen
dc.subjectSliding windowen
dc.subjectHalf-duplex linken
dc.titleBeam-Enabled Acoustic Link Establishment (BEALE) for underwater acoustic networksen

Files