Foveated object recognition by corner search



Journal Title

Journal ISSN

Volume Title



Here we describe a gray scale object recognition system based on foveated corner finding, the computation of sequential fixation points, and elements of Lowe’s SIFT transform. The system achieves rotational, transformational, and limited scale invariant object recognition that produces recognition decisions using data extracted from sequential fixation points. It is broken into two logical steps. The first is to develop principles of foveated visual search and automated fixation selection to accomplish corner search. The result is a new algorithm for finding corners which is also a corner-based algorithm for aiming computed foveated visual fixations. In the algorithm, long saccades move the fovea to previously unexplored areas of the image, while short saccades improve the accuracy of putative corner locations. The system is tested on two natural scenes. As an interesting comparison study we compare fixations generated by the algorithm with those of subjects viewing the same images, whose eye movements are being recorded by an eyetracker. The comparison of fixation patterns is made using an information-theoretic measure. Results show that the algorithm is a good locator of corners, but does not correlate particularly well with human visual fixations. The second step is to use the corners located, which meet certain goodness criteria, as keypoints in a modified version of the SIFT algorithm. Two scales are implemented. This implementation creates a database of SIFT features of known objects. To recognize an unknown object, a corner is located and a feature vector created. The feature vector is compared with those in the database of known objects. The process is continued for each corner in the unknown object until enough information has been accumulated to reach a decision. The system was tested on 78 gray scale objects, hand tools and airplanes, and shown to perform well.