Investigation of the Population Genetic Structure of the Toxic Dinoflagellate Karenia brevis in the Gulf of Mexico



Journal Title

Journal ISSN

Volume Title



Karenia brevis is the major harmful bloom forming dinoflagellate in the Gulf of Mexico. The toxin produced by this dinoflagellate can cause large fish kills, marine mammal mortality, respiratory irritation, and neurotoxic shellfish poisoning in humans. Blooms can occur anywhere in the Gulf of Mexico (hereafter Gulf) but are predominantly observed off the west coast of Florida and the coast of Texas. The west coast of Florida has been hypothesized to be the origin for blooms of K. brevis in other regions within the Gulf based upon the frequent formation of blooms in this region. To investigate this possibility, microsatellite markers were used to determine the population-genetic structure of K. brevis in the Gulf of Mexico. The difficulties of culturing K. brevis required development and use of a single-cell PCR amplification protocol for preserved cells. Lugol's iodine-preserved bloom samples of K. brevis were destained with sodium thiosulfate and subjected to two rounds of PCR amplification. The destaining protocol resulted in the successful, simultaneous amplification of five microsatellite markers from single cells of K. brevis. A total of 18, highly polymorphic microsatellite markers are available for K. brevis. Each marker was amplified from 40 cultures of K. brevis isolated from water samples from Florida and Texas. Observed genetic diversity was high but similar to the genetic diversity observed in other phytoplankton species. No genetic divergence was detected between isolates from Florida and isolates from Texas. Single cells from a total of 38 field samples were analyzed at five microsatellite markers to determine if population-genetic structure was present in K. brevis in the Gulf. Significant genetic divergence between several individual samples was detected, reflecting the high genetic diversity present within the species. Observed genetic divergence was low between blooms from the west coast of Florida and the coast of Texas and supports the hypothesis of a common origin for blooms of K. brevis in the Gulf of Mexico.