Geologically-based permeability anisotropy estimates for tidally-influenced reservoir analogs using lidar-derived, quantitative shale character data




Burton, Darrin

Journal Title

Journal ISSN

Volume Title



The principle source of heterogeneity affecting flow behavior in conventional clastic reservoirs is discontinuous, low-permeability mudstone beds and laminae (shales). Simple ‘streamline’ models have been developed which relate permeability anisotropy (kv/kh ) at the reservoir scale to shale geometry, fraction, and vertical frequency. A limitation of these models, especially for tidally-influenced reservoirs, is the lack of quantitative geologic inputs. While qualitative models exist that predict shale character in tidally-influenced environments (with the largest shales being deposited near the turbidity maximum in estuaries, and in the prodelta-delta front), little quantitative shale character data is available. The purpose of this dissertation is to collect quantitative data to test hypothetical relationships between depositional environment and shale character and to use this data to make geologically-based estimates of for different reservoir elements. For this study, high-resolution, lidar point-clouds were used to measure shale length, thickness, and frequency. This dissertation reports a novel method for using distance-corrected lidar intensity returns to distinguish sandstone and mudstone lithology. Lidar spectral and spatial data, photo panels, and outcrop measurements were used to map and quantify shale character. Detailed shale characteristics were measured from four different tidally-influenced reservoir analogs: estuarine point bar (McMurray Formation, Alberta, Canada), tidal sand ridge (Tocito Sandstone, New Mexico), and unconfined and confined tidal bars (Sego Sandstone, Utah). Estuarine point bars have long (l=67.8 m) shales that are thick and frequent relative to the other units. Tidal sand ridges have short (l=8.6 m dip orientation) shales that are thin and frequent. Confined tidal bars contain shales that are thin, infrequent, and anisotropic, averaging 16.3 m in length (dip orientation). Unconfined tidal bars contain nearly equidimensional (l=18.6 m dip orientation) shales with moderate thicknesses and vertical frequency. The observed shale geometries agree well with conceptual models for tidal environments. The unique shale character of each unit results in a different distribution of estimated . The average estimated kv/kh values for each reservoir element are: 8.2*10^4 for estuarine point bars, 0.038 for confined tidal bars, 0.004 for unconfined tidal bars, and 0.011 for tidal sand ridges.




Lidar, Tidally-influenced reservoirs, Shale, Depositional environment, Shale characterization, Permeability anisotropy, McMurray Formation, Sego Sandstone, Tocito Sandstone, Tidal bars, Tidal sand ridges