Acquisition and Mining of the Whole Mouse Brain Microstructure

Date

2010-10-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Charting out the complete brain microstructure of a mammalian species is a grand challenge. Recent advances in serial sectioning microscopy such as the Knife- Edge Scanning Microscopy (KESM), a high-throughput and high-resolution physical sectioning technique, have the potential to finally address this challenge. Nevertheless, there still are several obstacles remaining to be overcome. First, many of these serial sectioning microscopy methods are still experimental and are not fully automated. Second, even when the full raw data have been obtained, morphological reconstruction, visualization/editing, statistics gathering, connectivity inference, and network analysis remain tough problems due to the unprecedented amounts of data. I designed a general data acquisition and analysis framework to overcome these challenges with a focus on data from the C57BL/6 mouse brain. Since there has been no such complete microstructure data from any mammalian species, the sheer amount of data can overwhelm researchers. To address the problems, I constructed a general software framework for automated data acquisition and computational analysis of the KESM data, and conducted two scientific case studies to discuss how the mouse brain microstructure from the KESM can be utilized. I expect the data, tools, and studies resulting from this dissertation research to greatly contribute to computational neuroanatomy and computational neuroscience.

Description

Citation