Estimation and prediction of travel time from loop detector data for intelligent transportation systems applications



Journal Title

Journal ISSN

Volume Title


Texas A&M University


With the advent of Advanced Traveler Information Systems (ATIS), short-term travel time prediction is becoming increasingly important. Travel time can be obtained directly from instrumented test vehicles, license plate matching, probe vehicles etc., or from indirect methods such as loop detectors. Because of their wide spread deployment, travel time estimation from loop detector data is one of the most widely used methods. However, the major criticism about loop detector data is the high probability of error due to the prevalence of equipment malfunctions. This dissertation presents methodologies for estimating and predicting travel time from the loop detector data after correcting for errors. The methodology is a multi-stage process, and includes the correction of data, estimation of travel time and prediction of travel time, and each stage involves the judicious use of suitable techniques. The various techniques selected for each of these stages are detailed below. The test sites are from the freeways in San Antonio, Texas, which are equipped with dual inductance loop detectors and AVI.
?? Constrained non-linear optimization approach by Generalized Reduced Gradient (GRG) method for data reduction and quality control, which included a check for the accuracy of data from a series of detectors for conservation of vehicles, in addition to the commonly adopted checks.
?? A theoretical model based on traffic flow theory for travel time estimation for both off-peak and peak traffic conditions using flow, occupancy and speed values obtained from detectors. ?? Application of a recently developed technique called Support Vector Machines (SVM) for travel time prediction. An Artificial Neural Network (ANN) method is also developed for comparison.

Thus, a complete system for the estimation and prediction of travel time from loop detector data is detailed in this dissertation. Simulated data from CORSIM simulation software is used for the validation of the results.