First-principles investigation of the surface reactivity of Pd-based alloys for fuel cell catalyst applications

Date

2011-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In recent years, palladium (Pd) has been extensively studied for a possible alternative for Pt that has been most commonly used as a catalyst in fuel cells. However, Pd shows lower activity than Pt towards the cathodic oxygen reduction reaction (ORR) and also exhibits poor tolerance toward carbon monoxide (CO) poisoning occurring in the anode process. To improve its performance, alloying Pd with other transition metals has been suggested as one of promising solutions as the Pd-based alloys have been found to boost the ORR activity and yield significant improvement in the CO tolerance. However, a detailed understanding of the alloying effects is still lacking, despite its importance in designing and developing new and more cost effective fuel cell catalysts. This is in large part due to the difficulty of direct characterization. Alternatively, computational approaches based on quantum mechanics have emerged as a powerful and flexible means to unravel the complex alloying effects in multimetallic catalysts; such first principles-based computational studies have provided many invaluable insights into the mechanisms of catalytic reactions occurring on the alloy surfaces. Using first-principles density-functional theory calculations, we have examined the surface reactivity of Pd-based bimetallic catalysts with the aim of better understanding the alloying effects in association with atomic arrangement, facet, local strain, ligand interaction, and effective atomic coordination number at the surface. More specifically, this thesis work has focused on examining the following topics: Role of Pd ensembles in selective H₂O₂ formation on AuPd alloys; Effect of local strain and low-coordination number at the surface on the performance of Pd monomer in selective H₂O₂ formation; Different facet effects on the activity of Pd ensembles towards ORR; Structure of ternary Pd-Ir-Co alloys and its reactivity towards ORR; Pd ensembles effects on CO oxidation on CO-precovered Pd ensembles; Role of ligand and ensembles in determining CO chemisorptions on AuPd and AuPt. Our first principles-based theoretical investigation of bimetallic alloys offers some insights into the rational design and development of alloyed catalysts.

Description

text

Citation