Development of Advanced Nanomanufacturing: 3D Integration and High Speed Directed Self-assembly



Journal Title

Journal ISSN

Volume Title



Development of nanoscience and nanotechnology requires rapid and robust nanomanufacturing processes to produce nanoscale materials, structures and devices. The dissertation aims to contribute to two major challenging and attractive topics in nanomanufacturing. Firstly, this research develops fabrication techniques for three dimensional (3D) structures and integrates them into functional devices and systems. Secondly, a novel process is proposed and studied for rapid and efficient manipulation of nanomaterials using a directed self-assembly process. The study begins with the development of nanoimprint lithography for nanopatterning and fabrication of 3D multilayer polymeric structures in the micro- and nano-scale, by optimizing the layer-transfer and transfer-bonding techniques. These techniques allow the integration of microfluidic and photonic systems in a single chip for achieving ultracompact lab-on-a-chip concept. To exemplify the integration capability, a monolithic fluorescence detection system is proposed and the approaches to design and fabricate the components, such as a tunable optical filter and optical antennas are addressed. The nanoimprint lithography can also be employed to prepare nanopatterned polymer structures as a template to guide the self-assembly process of nanomaterials, such as single-walled carbon nanotubes (SWNTs). By introducing the surface functionalization, electric field and ultrasonic agitation into the process, we develop a rapid and robust approach for effective placement and alignment of SWNTs. These nanomanufacturing processes are successfully developed and will provide a pathway to the full realization of the lab-on-a-chip concept and significantly contribute to the applications of nanomaterials.