Tunnel MOS Heterostructure Field Effect Transistor for RF Switching Applications
Abstract
GaN RF switches are widely used in today?s communication systems. With digital communications getting more and more popular nowadays, the need for improving the performance of involved RF switches is inevitable. Designing low ON-state resistance GaN switches are exceedingly important to improve the switch insertion loss, isolation and power loss. Moreover, considerations need to be taken into account to improve the switching speed of the involved GaN HEMTs.
In this dissertation, a new GaN HEMT structure called ?Tunnel MOS Heterostructure FET (TMOSHFET)? is introduced which has lower ON-state resistance and faster switching speed compared to conventional AlGaN/GaN HEMTs. In the switch ON process, the channel of this device is charged up by electron tunneling from a layer underneath the channel as opposed to typical AlGaN/GaN HEMTs in which electron injection from the source is charging up the channel. The tunneling nature of this process together with the shorter travel distance of electrons in TMOSHFET provide for a faster switching speed.
In order to understand the tunneling mechanisms in TMOSHFET, the fabrication of AlGaN/GaN Schottky Barrier Diodes (SBDs) with various AlGaN thicknesses is demonstrated on Si (111) substrate. The impacts of SF6 dry etching on the trap density and trap state energy of AlGaN surface are investigated using the GP/w- w method. Various tunneling mechanisms at different biases are then characterized in samples and compared with each other.
To improve the source and drain resistances in TMOSHFET, a model is generated to optimize the 2DEG density and electric field in AlGaN/GaN heterostructure based on Al mole fraction, AlGaN thickness and the thickness of SiN passivation layer and it is experimentally verified by non-contact Hall 2DEG density measurements. The spontaneous and piezoelectric polarizations together with strain relaxation have been implemented into the model, taking into account the annealing effects. From the experimental data on obtained parameters, the operation and device parameterization of the TMOSHFET is outlined and design considerations to improve the device R_(ON)-V_(BR) figure of merit are discussed.