Effect of pressure-dependent permeability on tight gas wells



Journal Title

Journal ISSN

Volume Title


Texas A&M University


Tight gas reservoirs are those reservoirs where the matrix has a low permeability range (k < 0.1 md). The literature documents laboratory experiments under restressed conditions that show stress dependent rock properties are more significant in tighter rocks. For gas reservoirs, real gas properties are also sensitive to variations of pressure, and the correct description of gas flow must include pressure-dependent gas properties. Under these circumstances the resulting equation for real gas flow is a second order, non-linear, partial differential equation. Non-linearities include pressure-dependence of gas viscosity, gas compressibility, reservoir permeability and reservoir porosity. This paper investigates dynamic permeability change as a function of net overburden stress in tight gas reservoirs. The gas reservoir simulator used for this work included pressure-dependent reservoir permeability. Radial flow cases are analyzed using this simulator. During this study we found that from analysis of production data alone, it is impossible to determine the correct permeability value for tight gas reservoirs with pressure-dependent permeability. For the cases studied, the transient performance was similar for both constant permeability and pressure-dependent permeability. This similarity causes constant permeability and pressure-dependent permeability to be indistinguishable, based on analysis of transient performance data. It was found that the productivity index decreases when pressure-dependent permeability is more significant. Finally, this study verified that the method of Ibrahim et al.28 under estimates original gas in place (OGIP) for tight gas reservoirs with pressure-dependent permeability.