Fluorescent Labeling Reagents Optimized for Capillary Electrophoretic Separations

Date

2012-02-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Fluorescent labeling can improve the detection sensitivity in capillary electrophoretic (CE) separations down to attomolar concentrations. However, most fluorescent labels are not compatible with CE because their fluorescence properties and charge states are pH-dependent, they are often hydrophobic and they have a tendency to significantly change the properties of the analytes after labeling.

A group of fluorescent labeling reagents have been prepared whose fluorophores have properties that are optimized for CE separations. These fluorophores have fluorescence properties and charge states that are independent of pH in the 2 < pH < 11 range. Their excitation maxima are also compatible with the 488 nm line of the Argon ion laser. A mono-cationic acridine-based fluorescent label was prepared and was found to not shift the pI of a labeled model protein in capillary isoelectric focusing separation (cIEF). Lower loading, due to increased sensitivity, led to better resolution of closely spaced isoform peaks having a pI = 0.05. A tri-anionic pyrene-based fluorescent labeling reagent was also synthesized and was used in the sodium dodecyl sulfate capillary gel electrophoresis (SDS-CGE) separation of proteins. The fluorophore led to an LOQ in the nM range, and did not alter the migration behavior of proteins in the sieving matrix. A third fluorescent labeling reagent was developed as a solid phase reagent (SPR) where the fluorophore was immobilized on a solid surface through a cleavable anchor. The fluorophore is di-anionic and is based on pyrene. The SPR was designed to allow the simultaneous capture and labeling of an analyte and the efficient release of the label-analyte conjugate under mild acidic conditions. The use of the SPR allowed the labeling of a diamine whose concentration was in the low nanomolar range. The SPR opens up the possibility for mono-labeling and proportional multiple labeling of proteins.

Description

Citation