Behavioral Model Equivalence Checking for Large Analog Mixed Signal Systems



Journal Title

Journal ISSN

Volume Title



This thesis proposes a systematic, hierarchical, optimization based semi-formal equivalence checking methodology for large analog/mixed signal systems such as phase locked loops (PLL), analog to digital convertors (ADC) and input/output (I/O) circuits. I propose to verify the equivalence between a behavioral model and its electrical implementation over a limited, but highly likely, input space defined as the Constrained Behavioral Input Space. Furthermore, I clearly distinguish between the behavioral and electrical domains and define mapping functions between the two domains to allow for calculation of deviation between the behavioral and electrical implementation. The verification problem is then formulated as an optimization problem which is solved by interfacing a sequential quadratic programming (SQP) based optimizer with commercial circuit simulation tools, such as CADENCE SPECTRE. The proposed methodology is then applied for equivalence checking of a PLL as a test case and results are shown which prove the correctness of the proposed methodology.