Graphene field effect transistors for high performance flexible nanoelectronics
Abstract
Despite the widespread interest in graphene electronics over the last decade, high-performance graphene field-effect transistors (GFETs) on flexible substrates have been rarely achieved, even though this atomic sheet is widely understood to have greater prospects for flexible electronic systems. In this work, we investigate the realization of high-performance graphene field effect transistors implemented on flexible plastic substrates. The optimum device structure for high-mobility and high-bendability is suggested with experimental comparison among diverse structures including top-gate GFETs (TG-GFETs), single/multi-finger embedded-gate GFETs with high-k dielectrics (EG-highk/GFETs), and embedded-gate GFETs with hexagonal boron nitride (h-BN) dielectrics. Flexible graphene transistors with high-k dielectric afforded intrinsic gain, maximum carrier mobility of 8,000 cm²/V·s, and importantly 32 GHz cut-off frequency. Mechanical studies reveal robust transistor performance under repeated bending down to 0.7 mm bending radius whose tensile strain corresponds to 8.6%. Passivation techniques, with robust mechanical and chemical protection in order to operate under harsh environments, for embedded-gate structures are also covered. The integration of functional coatings such as highly hydrophobic fluoropolymers combined with the self-passivation properties of the polyimide substrate provides water-resistant protection without compromising flexibility, which is an important advancement for the realization of future robust flexible systems based on graphene.