Characterization of delamination in silicon/epoxy systems



Journal Title

Journal ISSN

Volume Title



Microelectronic devices are multilayered structures with many different interfaces. Their mechanical reliability is of utmost importance when considering the implementation of new materials. Linear elastic fracture mechanics (LEFM) is a common approach that has been used for interfacial fracture analyses in the microelectronics industry where the energy release rate parameter is considered to be the driving force for delamination and the failure criterion is established by comparing this with the interface toughness. However this approach has been unable to model crack-nucleation, which plays an important part in analyzing the mechanical reliability of chip-package systems. The cohesive interface modeling approach, which is considered here, has the capability to model crack nucleation and growth, provided interfacial parameters such as strength and toughness of the system are available. These parameters are obtained through the extraction of traction-separation relations, which can be obtained through indirect hybrid numerical/experimental methods or direct experimental methods. All methods of extracting traction-separation relations require some local feature of the crack-tip region to be measured. The focus in this doctoral work has been on the comparison of the two methods for a mode-I DCB experiment and on the development of a universal loading device to extract mixed-mode traction-separation relations at different mode-mix values. The techniques that have been adopted for the local measurements are infrared crack opening interferometry (IR-COI) and digital image correlation (DIC). Apart from the global measurements of load-displacement (P-[delta]), local crack-tip parameters were measured using IR-COI or DIC. The combination of global and local measurements gave the relations between the fracture driving force (energy release rate or J-integral, J) and crack opening displacements, which were used to obtain the local tractions. IR-COI is an extremely useful technique to image and measure local crack-tip parameters. However, as IR-COI is restricted to normal measurements, the loading device was configured to accommodate a DIC system in order to make both normal and tangential measurements. In addition to measurements, fracture surface characterization techniques such as atomic force microscopy (AFM), profilometry and X-ray photoelectron spectroscopy were used to observe the fracture mechanisms.