A 10Gb/s Full On-chip Bang-Bang Clock and Data Recovery System Using an Adaptive Loop Bandwidth Strategy

dc.contributorSilva-Martinez, Jose
dc.creatorJeon, Hyung-Joon
dc.date.accessioned2010-10-12T22:31:40Z
dc.date.accessioned2010-10-14T16:03:20Z
dc.date.accessioned2017-04-07T19:57:38Z
dc.date.available2010-10-12T22:31:40Z
dc.date.available2010-10-14T16:03:20Z
dc.date.available2017-04-07T19:57:38Z
dc.date.created2009-08
dc.date.issued2010-10-12
dc.description.abstractAs demand for higher bandwidth I/O grows, the front end design of serial link becomes significant to overcome stringent timing requirements on noisy and bandwidthlimited channels. As a clock reconstructing module in a receiver, the recovered clock quality of Clock and Data Recovery is the main issue of the receiver performance. However, from unknown incoming jitter, it is difficult to optimize loop dynamics to minimize steady-state and dynamic jitter. In this thesis a 10 Gb/s adaptive loop bandwidth clock and data recovery circuit with on-chip loop filter is presented. The proposed system optimizes the loop bandwidth adaptively to minimize jitter so that it leads to an improved jitter tolerance performance. This architecture tunes the loop bandwidth by a factor of eight based on the phase information of incoming data. The resulting architecture performs as good as a maximum fixed loop bandwidth CDR while tracking high speed input jitter and as good as a minimum fixed bandwidth CDR while suppressing wide bandwidth steady-state jitter. By employing a mixed mode predictor, high updating rate loop bandwidth adaptation is achieved with low power consumption. Another relevant feature is that it integrates a typically large off-chip filter using a capacitance multiplication technique that employs dual charge pumps. The functionality of the proposed architecture has been verified through schematic and behavioral model simulations. In the simulation, the performance of jitter tolerance is confirmed that the proposed solution provides improved results and robustness to the variation of jitter profile. Its applicability to industrial standards is also verified by the jitter tolerance passing SONET OC-192 successfully.
dc.identifier.urihttp://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7183
dc.language.isoen_US
dc.subjectCDR
dc.subjectPLL
dc.subjectClock and Data Recovery
dc.subjectPhase-Locked Loop
dc.subjectSerial Link
dc.subjectSONET
dc.subjectOC-192
dc.subjectAdaptive loop bandwidth
dc.subjectcapacitance multiplication
dc.subjecthalf-rate phase detector
dc.titleA 10Gb/s Full On-chip Bang-Bang Clock and Data Recovery System Using an Adaptive Loop Bandwidth Strategy
dc.typeBook
dc.typeThesis

Files