Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High-resolution measurement of dissolved oxygen concentration in vivo using two-photon microscopy

    Thumbnail
    Date
    2011-05
    Author
    Estrada, Arnold Delfino
    Metadata
    Show full item record
    Abstract
    Because oxygen is vital to the metabolic processes of all eukaryotic cells, a detailed understanding of its transport and consumption is of great interest to researchers. Existing methods of quantifying oxygen delivery and consumption are non-ideal for in vivo measurements. They either lack the three-dimensional spatial resolution needed, are invasive and disturb the local physiology, or they rely on hemoglobin spectroscopy, which is not a direct measure of the oxygen available to cells. Consequently, many fundamental physiology research questions remain unanswered. This dissertation presents our development of a novel in vivo oxygen measurement technique that seeks to address the shortcomings of existing methods. Specifically, we have combined two-photon microscopy with phosphorescence quenching oximetry to produce a system that is capable of performing depth-resolved, high-resolution dissolved oxygen concentration (PO2) measurements. Furthermore, the new technique allows for simultaneous visualization of the micro-vasculature and measurement of blood velocity. We demonstrate the technique by quantifying PO2 in rodent cortical vasculature under normal and pathophysiologic conditions. We also demonstrate the technique’s usefulness in examining the changes in oxygen transport that result from acute focal ischemia in rodent animal models.
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-05-2806
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV