Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic modeling of membrane swelling in fuel cell manufacturing

    Thumbnail
    Date
    2010-12
    Author
    Silverman, Timothy J.
    Metadata
    Show full item record
    Abstract
    Fuel cells are promising energy conversion devices, but they have not been widely adopted because of their very high cost. The most expensive component of a fuel cell is the membrane electrode assembly, a polymer film coated with catalyst material. The catalyst layer is fabricated by depositing and drying a liquid ink on the membrane. The membrane can rapidly absorb water from the ink, causing swelling strain sufficient for wrinkling, which can cause defects in the finished product. These challenges limit most catalyst layer fabrication to individual preparation by hand. We seek to understand the swelling phenomenon in a way that enables the control of defects during mass production. Membrane swelling is a transient, three-dimensional, coupled mass transfer, heat transfer and solid mechanics problem. Existing models describe the membrane in fuel cell operating conditions, making use of simplifying assumptions that are not valid for predicting manufacturing defects. We present a new model incorporating effects that are missing from other models. We present simulation results for scenarios relevant to the control of defects. Simple spatial variations in water content can cause curl and wrinkling; we establish criteria for the formation of these defects by simulating the membrane's response when subjected to the full pre-swollen coating and drying process. We investigate the sensitivity of wrinkling to nonuniformity in the coating and to processing conditions in the coating line. We propose a rationale for controlling wrinkling caused by these effects and for diagnosing coating defects using the membrane's wrinkling response. We show how the membrane behaves differently depending on whether the coating is applied to one side or to both sides simultaneously. We have designed and constructed a machine to pre-swell the membrane, apply a coating and then dry the coating under controlled tension, speed, temperature and humidity. We present the design and discuss how the machine may be used, together with the membrane model, to predict and control defects in catalyst-coated membranes.
    URI
    http://hdl.handle.net/2152/ETD-UT-2010-12-2085
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV