Sub-diffraction limited imaging of plasmonic nanostructures

Date

2014-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis is focused on understanding the interactions between molecules and surface-enhanced Raman scattering (SERS) substrates that are typically unresolved due to the diffraction limit of light. Towards this end, we have developed and tested several different sub-diffraction-limited imaging techniques in order to observe these interactions. First, we utilize an isotope-edited bianalyte approach combined with super-resolution imaging via Gaussian point-spread function fitting to elucidate the role of Raman reporter molecules on the location of the SERS emission centroids. By using low concentrations of two different analyte molecules, we find that the location of the SERS emission centroid depends on the number and positions of the molecules present on the SERS substrate. It is also known that SERS enhancement partially results from the molecule coupling its emission into the far-field through the plasmonic nanostructure. This results in a particle-dictated, dipole-like emission pattern, which cannot be accurately modeled as a Gaussian, so we tested the applicability of super-resolution imaging using a dipole-emission fitting model to this data. To test this model, we first fit gold nanorod (AuNR) luminescence images, as AuNR luminescence is primarily coupled out through the longitudinal dipole plasmon mode. This study showed that a three-dimensional dipole model is necessary to fit the AuNR emission, with the model providing accurate orientation and emission wavelength parameters for the nanostructure, as confirmed using correlated AFM and spectroscopy. The dipole fitting technique was next applied to single- and multiple-molecule SERS emission from silver nanoparticle dimers. We again found that a three-dimensional dipole PSF was necessary to accurately model the emission and orientation parameters of the dimer, but that at the single molecule level, the movement of the molecule causes increased uncertainty in the orientation parameters determined by the fit. Finally, we describe progress towards using a combined atomic force/optical microscope system in order to position a carbon nanotube analyte at known locations on the nanoparticle substrate. This would allow for the simultaneous mapping of nanoparticle topography and exact locations of plasmonic enhancement around the nanostructure, but consistently low signal-to-noise kept this technique from being viable.

Description

text

Citation