Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling steam assisted gravity drainage in heterogeneous reservoirs using different upscaling techniques

    Thumbnail
    Date
    2014-05
    Author
    Kumar, Dhananjay
    Metadata
    Show full item record
    Abstract
    This thesis presents different methods that improve the ability to relate the flow properties of heterogeneous reservoirs to equivalent anisotropic flow properties in order to predict the performance of the Steam Assisted Gravity Drainage (SAGD) process. Process simulation using full scale heterogeneous reservoirs are inefficient and so the need arises to develop equivalent anisotropic reservoirs that can capture the effect of reservoir heterogeneity. Since SAGD is highly governed by permeability in the reservoir, effective permeability values were determined using different upscaling techniques. First, a flow-based upscaling technique was employed and a semi-analytical model, derived by Azom and Srinivasan, was used to determine the accuracy of the upscaling. The results indicated inadequacy of flow-based upscaling schemes to derive effective direction permeabilities consistent with the unique flow geometry during the SAGD process. Subsequently, statistical upscaling was employed using full 3D models to determine relationships between the heterogeneity variables: k[subscript italic v]⁄k[subscript italic h] , correlation length and shale proportion. An iterative procedure coupled with an optimization algorithm was deployed to determine optimal k[subscript italic v] and k[subscript italic k] values. Further regression analysis was performed to explore the relationship between the variables of shale heterogeneity in a reservoir and the corresponding effective properties. It was observed that increased correlation lengths and shale proportions both decrease the dimensionless flow rates at given dimensionless times and that the semi-analytical model was more accurate for cases that contained lower shale proportions. Upscaled heterogeneous values inputted into the semi-analytical model resulted in underestimation of oil flow rate due to the inability to fully account for the impact of reservoir barriers and the configuration of flow streamlines during the SAGD process. Statistical upscaling using geometric averaging as the initial guess was used as the basis for developing a relationship between correlation length, shale proportion and k[subscript italic v]⁄k[subscript italic h]. The initial regression models did not accurately predict the anisotropic ratio because of insufficient data points along the regression surface. Subsequently a non-linear regression model that was 2nd order in both length and shale proportion was calibrated by executing more cases with varying levels of heterogeneity and the regression model revealed excellent matches to heterogeneous models for the prediction cases.
    URI
    http://hdl.handle.net/2152/26441
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV