Applications of Irreversible Thermodynamics: Bulk and Interfacial Electronic, Ionic, Magnetic, and Thermal Transport

Date

2012-10-19

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Irreversible thermodynamics is a widely-applicable toolset that extends thermodynamics to describe systems undergoing irreversible processes. It is particularly useful for describing macroscopic flow of system components, whether conserved (e.g., particle number) or non-conserved (e.g., spin). We give a general introduction to this toolset and calculate the entropy production due to bulk and interfacial flow. We compare the entropy production and heating rate of bulk and interfacial transport, as well as interfacial charge and spin transport. We then demonstrate the power and applicability of this toolset by applying it to three systems.

We first consider metal oxide growth, and discuss inconsistency in previous theory by Mott. We show, however, that Mott's solution is the lowest order of a consistent asymptotic solution, with the ion and electron concentrations and fluxes going as power series in t^-k/2, where k = 1, 2, .... We find that this gives corrections to the "parabolic growth law" that has oxide thickness going as t^1/2; the lowest order correction is logarithmic in t.

We then consider the effect on spin of electric currents crossing an interface between a ferromagnet (FM) and non-magnetic material (NM). Previous theories for electrical potential and spin accumulation neglect chemical or magnetic contributions to the energy. We apply irreversible thermodynamics to show that both contributions are pivotal in predicting the spin accumulation, particularly in the NM. We also show that charge screening, not considered in previous theories, causes spin accumulation in the FM, which may be important in ferromagnetic semiconductors.

Finally, we apply irreversible thermodynamics to thermal equilibration in a thin-film FM on a substrate. Recent experiments suggest that applying a thermal gradient across the length of the system causes a spin current along the thickness; this spin current is present much farther from the heat sources than expected. We find that, although the interaction between the separate thermal equilibration processes increases the largest equilibration length, thermal equilibration does not predict a length as large as the experimentally measured length; it does predict, however, a thermal gradient along the thickness that has the shape of the measured spin current.

Description

Citation