Critical Analysis and Review of Flash Points of High Molecular Weight Poly-functional C, H, N, O Compounds

Date

2011-08-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The research focuses on the critical review and prediction of flash points of high molecular weight compounds used mainly in the specialty chemical area. Thus far this area of high molecular weight specialty chemicals has not been thoroughly reviewed for flash point prediction; therefore critical review for accuracy of experimental values is difficult. Without critical review, the chance of hazards occurring in the processing and handling of these compounds increases. A reliable method for making predictions is important to efficiently review experimental values since duplicate experimentation can be time consuming and costly. The flash point is strongly correlated to the normal boiling point (NBP) but experimental NBP is not feasible for chemicals of high molecular weight. The reliability of existing NBP prediction methods was found inadequate for our compounds of interest therefore a new NBP prediction method was developed first. This method is based on ten simple group contributions and the molecular weight of the molecule. The training set included 196 high molecular weight C, H, N and O compounds. It produced an average absolute error (AAE) of 13K, superior to any other model tested so far. An accurate NBP is essential for critical review and new method development for flash point. A preliminary data analysis based on chemical family analysis allowed for detection of erroneous data points. These compounds were re-tested at a Huntsman facility. With a predicted normal boiling point, a new FP method that differentiates strong and iv weak hydrogen bonding compounds was developed. This was done because of the differences in entropy of vaporization for hydrogen bonding compounds. The training set consisted of 191 diverse C, H, N, O compounds ranging from 100 to 4000 g/mol in molecular weight. The test set consisted of 97 compounds of similar diversity. Both data sets produced an AAE of 5K and maximum deviation of 17.5K. It was also found that no substantial decomposition was found for these compounds at flash point conditions. These compounds appear to follow the same physical trends as lower molecular weight compounds. With this new method it is possible to critically review this class of chemicals as well as update NBP and other physical property data.

Description

PDF file replaced 4-20-2012 at request of Thesis Office.

Citation