Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kilogram Scale Synthesis of a Triazine-based Dendrimer and the Development of a General Strategy for the Installation of Pharmacophores to Yield Potential Drug Delivery Agents

    Thumbnail
    Date
    2011-02-22
    Author
    Venditto, Vincent J.
    Metadata
    Show full item record
    Abstract
    Diverse dendrimer peripheries are often produced through convergent synthesis with multiple protection-deprotection steps. Achieving such diversity while maintaining monodispersity, has previously proven problematic. Interception of an electrophilic poly(monochlorotriazine) dendrimer with a molecule of interest bearing a reactive, nucleophilic group presents an efficient method to achieve large quantities of dendrimers with biologically relevant peripheries. Kilogram-scale synthesis of a triazine-based dendrimer relies on reaction of the dichlorotriazine monomer with the amine terminated dendrimer to afford a poly(monochlorotriazine) dendrimer. Normally, the dendrimer is then reacted with piperidine, an inexpensive ?cap? due to its chemically inert nature after reaction. The dendrimer then undergoes a global deprotection to afford an amine-terminated dendrimer. Subsequent iterations with the dichlorotriazine monomer affords higher generation architectures. Intercepting the poly(monochlorotriazine) dendrimer with biologically relevant molecules containing reactive amines enables the development of a drug delivery vehicle. Desferrioxamine B, an iron chelate, and camptothecin, and anticancer drug, are two clinically approved drugs of interest investigated for macromolecular drug delivery. Upon acylation of each drug with BOC-isonipecotic acid, substitution on the dendrimer may occur with varying levels of success depending on the drug in question. Upon successful substitution to afford the desired product,biological studies may be performed. Each synthetic approach will be discussed along with alternative routes leading to this general strategy.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7615
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV