Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hardware Acceleration of Electronic Design Automation Algorithms

    Thumbnail
    Date
    2010-07-14
    Author
    Gulati, Kanupriya
    Metadata
    Show full item record
    Abstract
    With the advances in very large scale integration (VLSI) technology, hardware is going parallel. Software, which was traditionally designed to execute on single core microprocessors, now faces the tough challenge of taking advantage of this parallelism, made available by the scaling of hardware. The work presented in this dissertation studies the acceleration of electronic design automation (EDA) software on several hardware platforms such as custom integrated circuits (ICs), field programmable gate arrays (FPGAs) and graphics processors. This dissertation concentrates on a subset of EDA algorithms which are heavily used in the VLSI design flow, and also have varying degrees of inherent parallelism in them. In particular, Boolean satisfiability, Monte Carlo based statistical static timing analysis, circuit simulation, fault simulation and fault table generation are explored. The architectural and performance tradeoffs of implementing the above applications on these alternative platforms (in comparison to their implementation on a single core microprocessor) are studied. In addition, this dissertation also presents an automated approach to accelerate uniprocessor code using a graphics processing unit (GPU). The key idea is to partition the software application into kernels in an automated fashion, such that multiple instances of these kernels, when executed in parallel on the GPU, can maximally benefit from the GPU?s hardware resources. The work presented in this dissertation demonstrates that several EDA algorithms can be successfully rearchitected to maximally harness their performance on alternative platforms such as custom designed ICs, FPGAs and graphic processors, and obtain speedups upto 800X. The approaches in this dissertation collectively aim to contribute towards enabling the computer aided design (CAD) community to accelerate EDA algorithms on arbitrary hardware platforms.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7471
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV