Measure-Driven Algorithm Design and Analysis: A New Approach for Solving NP-hard Problems

Date

2010-10-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

NP-hard problems have numerous applications in various fields such as networks, computer systems, circuit design, etc. However, no efficient algorithms have been found for NP-hard problems. It has been commonly believed that no efficient algorithms for NP-hard problems exist, i.e., that P6=NP. Recently, it has been observed that there are parameters much smaller than input sizes in many instances of NP-hard problems in the real world. In the last twenty years, researchers have been interested in developing efficient algorithms, i.e., fixed-parameter tractable algorithms, for those instances with small parameters. Fixed-parameter tractable algorithms can practically find exact solutions to problem instances with small parameters, though those problems are considered intractable in traditional computational theory. In this dissertation, we propose a new approach of algorithm design and analysis: discovering better measures for problems. In particular we use two measures instead of the traditional single measure?input size to design algorithms and analyze their time complexity. For several classical NP-hard problems, we present improved algorithms designed and analyzed with this new approach, First we show that the new approach is extremely powerful for designing fixedparameter tractable algorithms by presenting improved fixed-parameter tractable algorithms for the 3D-matching and 3D-packing problems, the multiway cut problem, the feedback vertex set problems on both directed and undirected graph and the max-leaf problems on both directed and undirected graphs. Most of our algorithms are practical for problem instances with small parameters. Moreover, we show that this new approach is also good for designing exact algorithms (with no parameters) for NP-hard problems by presenting an improved exact algorithm for the well-known satisfiability problem. Our results demonstrate the power of this new approach to algorithm design and analysis for NP-hard problems. In the end, we discuss possible future directions on this new approach and other approaches to algorithm design and analysis.

Description

Citation