Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of the photocatalytic lithographic deposition of metals in sealed microfluidic devices on TiO2 surfaces

    Thumbnail
    Date
    2009-05-15
    Author
    Castellana, Edward Thomas
    Metadata
    Show full item record
    Abstract
    The research presented within this dissertation explores the photocatalytic deposition of metal carried out within sealed microfluidic channels. Micro scale patterning of metals inside sealed microchannels is investigated as well as nanoscale control over the surface morphology of the nanoparticles making up the patterns. This is achieved by controlling solution conditions during deposition. Finally, the nanoparticle patterns are used in fabricating a sensor device, which demonstrates the ability to address multiple patches within a sealed channel with different surface chemistries. Also presented here is the construction of the first epifluorescence/total internal reflection macroscope. Its ability to carry out high numerical aperture imaging of large arrays of solid supported phospholipid bilayers is explored. For this, three experiments are carried out. First, imaging of a 63 element array where every other box contains a different bilayer is preformed, demonstrating the ability to address large scale arrays by hand. Next, a protein binding experiment is preformed using two different arrays of increasing ligand density on the same chip. Finally, a two-dimensional array of mixed fluorescent dyes contained within solid supported lipid bilayers is imaged illustrating the ability of the instrument to acquire fluorescent resonance energy transfer data. Additionally, the design and fabrication of an improved array chip and addressing method is presented. Using this new array chip and addressing method in conjunction with the epifluorescence/total internal reflection macroscope should provide an efficient platform for high throughput screening of important biological processes which occur at the surfaces of cell membranes.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-1009
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV