High resolution laser spectroscopy of cesium and rubidium molecules with optically induced coherence

Date

2006-10-30

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

This work is devoted to the study of the quantum coherent effects in diatomic molecular systems by using high resolution laser spectroscopy. In particular, we have studied the rubidium diatomic molecular gaseous medium's absorption spectrum with high resolution single mode laser spectroscopy. The derived electronic and rotational vibrational constants were used in the backward Raman amplification experiment of Rb diatomic molecule. Both experimental results and theoretical calculation confirms that there is strong backward directionally dependent radiation. This effect can further be utilized in remote detection of chemical material. In the saturated spectroscopy experiment of the cesium diatomic molecule, long-lived ground state coherence was observed. The coherence would decay at a rate less than the natural life time of the excited states, which indicates great possibility for performing the quantum optics experiments previously performed in atomic systems only. Electromagnetically induced transparency has been observed in many atomic systems for many years, while it has been seldom realized in molecular systems. In our experiment of electromagnetically induced transparency in cesium diatomic molecules, we utilized ???? energy levels, and observed subnatural linewidth. This is the first time to realize a ???? type EIT in a molecular ensemble. This experiment will lead to many other experiments of quantum effects in a molecular system, such like magnetic optical rotation, light storage in ensemble of molecules. Magnetically induced chirality in an atomic ensemble is also investigated in my research.

Description

Citation