Prediction of shear strength and vertical movement due to moisture diffusion through expansive soils

Date

2006-10-30

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

This dissertation presents an investigation of engineering behavior of expansive soils. An analytical study was undertaken for the development and modification of a Windows-based two-dimensional finite element computer program FLODEF that performs a sequentially coupled flow-displacement analysis for the prediction of moisture diffusion and the induced volume change in soils supporting various elements of civil infrastructure. The capabilities of the model are illustrated through case studies of shear strength envelope forecast and parametric studies of transient flow-deformation prediction in highway project sites to evaluate the effectiveness of engineering treatment methods to control swell-shrink deformations beneath highway pavements. Numerical simulations have been performed to study the field moisture diffusivity using a conceptual model of moisture diffusion in a fractured soil mass. A rough correlation between field and the laboratory measurements of moisture diffusion coefficients has been presented for different crack depth patterns.

Description

Citation