Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Person-based Adaptive Priority Signal Control with Connected-vehicle Information

    Thumbnail
    Date
    2014-12-17
    Author
    Sun, Xin
    Metadata
    Show full item record
    Abstract
    This thesis proposes a TSP (transit signal priority) strategy of person-based adaptive priority signal control with connected-vehicle information (PAPSCCI). By minimizing the total person delay at an isolated intersection, PAPSCCI can assign signal priorities to transit vehicles due to their high occupancies, while minimize the negative impact to the auto traffic. With the accurate vehicle information provided by connected-vehicle technology, PAPSCCI can estimate person delay for each passenger directly and form a MILP (mixed-integer linear program) for the optimization. Performances of PAPSCCI were evaluated through simulations. Results show decreases of both vehicle delay and person delay of all vehicle types when there are up to three bus routes running through the intersection. How different penetration rates of the connected-vehicle technology affect the performance of the PAPSCCI were tested. Necessary revisions were made to the PAPSCCI model considering different penetration rates. Results show that the effectiveness of PAPSCCI worsens with the lowering of penetration rate. The delay improvements, however, were still promising when the penetration rate is above 40%. PAPSCCI model were also developed and tested with communication range of 2000 m, 1000 m, 500 m and 250 m. Expect that the 1000 m case has the best delay improvements after PAPSCCI optimization, the effectiveness of the model worsens when the communication range getting smaller. Even when the communication range is down to 250 m, PAPSCCI can still reduce the delay for all vehicle types.
    URI
    http://hdl.handle.net/1969.1/154125
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV