Numerical Simulations of a Wave Energy Conversion Device Used for Oceanographic Buoys

Date

2014-07-24

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Moored buoy systems are often deployed by oceanographers to gather scientific information on local and global changes in the water column, weather patterns and climate change. The data they gather is first transmitted to satellites or passing oceanographic ships prior to transmission land based research facilities. Most buoy designs are powered by battery systems that provide ballast and some can be recharged by solar panels. At-sea maintenance may include regular battery replacement or repairs to the buoy system due to vandalism, each being expensive propositions. In order to reduce the costs and utilize green energy, this thesis research investigates the use of incorporating a pendulum wave energy conversion (WEC) device as a permanent or semi-permanent power source for some oceanographic buoys having an average power consumption that can vary from 0.1W to 6.0W.

The main criteria for selecting a WEC device for this application are operational reliability, sustainability during operational and extreme weather conditions, and minimizing the opportunity for vandalism. A general analytical model was developed and simulations of the motions of the buoy were performed using the numerical code COUPLE, which was originally developed to simulate the coupled response behavior of a deepwater floating hull and the associated mooring/riser/tendon systems. Based upon the motion behavior from the numerical simulation, the electrical power output by the selected WEC device is estimated using an iterative scheme to estimate equivalent damping of a hydraulic Power Take-Off (PTO) system.

Several illustrative case studies are presented to verify that the electrical power output rate is in the range of the power demands needed by typical oceanographic buoys. It is concluded that the proposed pendulum WEC device is a feasible solution that can be designed to provide an alternative power system to power oceanographic buoys. The research study provides a way to approach the design and utilization of WEC devices to capture wave energy as a natural power source for a wide range of buoy shapes, sizes and configurations for existing and future buoy designs.

Description

Citation