Regulation of Mammary cell Differentiation and Metabolism by Singleminded-2s

Date

2013-05-21

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Ductal carcinoma in situ (DCIS) has been shown to be a precursor to invasive ductal cancer (IDC). Though the progression of DCIS to IDC is believed to be an important aspect of tumor aggressiveness, prognosis and molecular markers that predict progression are poorly understood. Therefore, determining the mechanisms by which some DCIS progress is critical for future breast cancer diagnostics and treatment.

Singleminded-2s (SIM2s) is a member of the bHLH/PAS family of transcription factors and a key regulator of differentiation. SIM2s is highly expressed in mammary epithelial cells and lost in breast cancer. Loss of Sim2s causes aberrant mouse mammary development with features suggestive of malignant transformation, whereas over-expression of Sim2s promotes precocious alveolar differentiation, suggesting that Sim2s is required for establishing and enhancing mammary gland differentiation. We hypothesize that SIM2s expression must be lost in premalignant lesions for breast cancer to develop.

We first analyzed Sim2s in the involuting mammary gland, which is a highly tumorpromoting environment. Sim2s is down-regulated during involution, and forced expression delays involution. We then analyzed SIM2s expression in human breast cancer samples and found that SIM2s is lost with progression from DCIS to IDC, and this loss correlates with metastasis. SIM2s expression in DCIS promoted a differentiated phenotype and suppressed genes associated with de-differentiation. Furthermore, loss of SIM2s expression in DCIS xenografts increased metastasis likely due to an increase in hedgehog signaling and matrix metalloproteinase expression. Interestingly, we found metabolic shifts with gain and loss of SIM2s in not only DCIS cells, but also MCF7 and SUM159 cells. SIM2s expression decreased aerobic glycolysis and promoted oxidative phosphorylation through direct upregulation of CDKN1a and senescence. Loss of SIM2s, conversely, promotes mitochondrial dysfunction and induction of the Warburg effect. This is the first time CDKN1a and cellular senescence have been indicated as causative to metabolic shifts within cancer cells.

These studies show a new role for SIM2s in metabolic homeostasis, and this regulation is lost during tumorigenesis. These data indicate SIM2s is at the apex where aging, metabolism, and disease meet ? regulating the delicate relationship between the three.

Description

Citation