Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design Guidelines for Test Level 3 (TL-3) Through Test Level 5 (TL-5) Roadside Barrier Systems Placed on Mechanically Stabilized Earth (MSE) Retaining Wall

    Thumbnail
    Date
    2012-12-05
    Author
    Saez Barrios, Deeyvid 1980-
    Metadata
    Show full item record
    Abstract
    The use of Mechanically Stabilized Earth (MSE) wall structures has increased dramatically in recent years. Traffic barriers are frequently placed on top of the MSE wall to resist vehicular impact loads. The barrier systems are anchored to the concrete in case of rigid pavement. Nevertheless, in case of flexible pavement, the barriers are constructed in an L shape so that the impact load on the vertical part of the L can be resisted by the inertia force required to uplift the horizontal part of the L. The barrier must be designed to resist the full dynamic load but the size of the horizontal part of the L (moment slab) is determined using an equivalent static load. Current design practice of barriers mounted on top of MSE retaining wall is well defined for passenger cars and light trucks. However, the information of this impact level is extrapolated to heavy vehicle impact. Therefore, the bases of this research is to develop design procedure and to help understand the dynamic behavior of a barrier-moment slab system on top of an MSE wall when subjected to heavy vehicle impact loads. In a first part, numerical analyses were conducted to better understand the behavior of the barrier-moment slab system when subjected to heavy vehicle impact loads. The full-scale impact simulations were used to develop the recommendation for designing and sizing the barrier-moment slab system. In a second part, the barrier-moment slab systems defined to contain heavy vehicle impact loads were placed on top of an MSE wall model to study the kinematic behavior of the system. Loads in the soil reinforcing strips and displacements on the barriers and wall components are evaluated to define recommendation for design of strip reinforcements against pullout and yielding. In a third part, a full-scale crash test on a barrier-moment slab system on top of an instrumented 9.8 ft. (3 m) high MSE wall is described and analyzed. The MSE wall and barrier system were adequate to contain and redirected the vehicle and, therefore, it served as verification of the proposed recommendation. Finally, conclusions are drawn on the basis of the information presented herein.
    URI
    http://hdl.handle.net/1969.1/148253
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV