Browsing by Subject "sketch recognition"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Freehand Sketch Recognition for Computer-Assisted Language Learning of Written East Asian Languages(2011-02-22) Taele, Paul PiulaOne of the challenges students face in studying an East Asian (EA) language (e.g., Chinese, Japanese, and Korean) as a second language is mastering their selected language?s written component. This is especially true for students with native fluency of English and deficient written fluency of another EA language. In order to alleviate the steep learning curve inherent in the properties of EA languages? complicated writing scripts, language instructors conventionally introduce various written techniques such as stroke order and direction to allow students to study writing scripts in a systematic fashion. Yet, despite the advantages gained from written technique instruction, the physical presence of the language instructor in conventional instruction is still highly desirable during the learning process; not only does it allow instructors to offer valuable real-time critique and feedback interaction on students? writings, but it also allows instructors to correct students? bad writing habits that would impede mastery of the written language if not caught early in the learning process. The current generation of computer-assisted language learning (CALL) applications specific to written EA languages have therefore strived to incorporate writing-capable modalities in order to allow students to emulate their studies outside the classroom setting. Several factors such as constrained writing styles, and weak feedback and assessment capabilities limit these existing applications and their employed techniques from closely mimicking the benefits that language instructors continue to offer. In this thesis, I describe my geometric-based sketch recognition approach to several writing scripts in the EA languages while addressing the issues that plague existing CALL applications and the handwriting recognition techniques that they utilize. The approach takes advantage of A Language to Describe, Display, and Editing in Sketch Recognition (LADDER) framework to provide users with valuable feedback and assessment that not only recognizes the visual correctness of students? written EA Language writings, but also critiques the technical correctness of their stroke order and direction. Furthermore, my approach provides recognition independent of writing style that allows students to learn with natural writing through size- and amount-independence, thus bridging the gap between beginner applications that only recognize single-square input and expert tools that lack written technique critique.Item Rethinking Pen Input Interaction: Enabling Freehand Sketching Through Improved Primitive Recognition(2011-08-08) Paulson, Brandon C.Online sketch recognition uses machine learning and artificial intelligence techniques to interpret markings made by users via an electronic stylus or pen. The goal of sketch recognition is to understand the intention and meaning of a particular user's drawing. Diagramming applications have been the primary beneficiaries of sketch recognition technology, as it is commonplace for the users of these tools to rst create a rough sketch of a diagram on paper before translating it into a machine understandable model, using computer-aided design tools, which can then be used to perform simulations or other meaningful tasks. Traditional methods for performing sketch recognition can be broken down into three distinct categories: appearance-based, gesture-based, and geometric-based. Although each approach has its advantages and disadvantages, geometric-based methods have proven to be the most generalizable for multi-domain recognition. Tools, such as the LADDER symbol description language, have shown to be capable of recognizing sketches from over 30 different domains using generalizable, geometric techniques. The LADDER system is limited, however, in the fact that it uses a low-level recognizer that supports only a few primitive shapes, the building blocks for describing higher-level symbols. Systems which support a larger number of primitive shapes have been shown to have questionable accuracies as the number of primitives increase, or they place constraints on how users must input shapes (e.g. circles can only be drawn in a clockwise motion; rectangles must be drawn starting at the top-left corner). This dissertation allows for a significant growth in the possibility of free-sketch recognition systems, those which place little to no drawing constraints on users. In this dissertation, we describe multiple techniques to recognize upwards of 18 primitive shapes while maintaining high accuracy. We also provide methods for producing confidence values and generating multiple interpretations, and explore the difficulties of recognizing multi-stroke primitives. In addition, we show the need for a standardized data repository for sketch recognition algorithm testing and propose SOUSA (sketch-based online user study application), our online system for performing and sharing user study sketch data. Finally, we will show how the principles we have learned through our work extend to other domains, including activity recognition using trained hand posture cues.Item Segmenting Hand-Drawn Strokes(2012-07-16) Wolin, Aaron DavidPen-based interfaces utilize sketch recognition so users can create and interact with complex, graphical systems via drawn input. In order for people to freely draw within these systems, users' drawing styles should not be constrained. The low-level techniques involved with sketch recognition must then be perfected, because poor low-level accuracy can impair a user's interaction experience. Corner finding, also known as stroke segmentation, is one of the first steps to free-form sketch recognition. Corner finding breaks a drawn stroke into a set of primitive symbols such as lines, arcs, and circles, so that the original stoke data can be transformed into a more machine-friendly format. By working with sketched primitives, drawn objects can then be described in a visual language, noting what primitive shapes have been drawn and the shapes? geometric relationships to each other. We present three new corner finding techniques that improve segmentation accuracy. Our first technique, MergeCF, is a multi-primitive segmenter that splits drawn strokes into primitive lines and arcs. MergeCF eliminates extraneous primitives by merging them with their neighboring segments. Our second technique, ShortStraw, works with polyline-only data. Polyline segments are important since many domains use simple polyline symbols formed with squares, triangles, and arrows. Our ShortStraw algorithm is simple to implement, yet more powerful than previous polyline work in the corner finding literature. Lastly, we demonstrate how a combination technique can be used to pull the best corner finding results from multiple segmentation algorithms. This combination segmenter utilizes the best corners found from other segmentation techniques, eliminating many false negatives (missed primitive segmentations) from the final, low-level results. We will present the implementation and results from our new segmentation techniques, showing how they perform better than related work in the corner finding field. We will also discuss limitations of each technique, how we have sought to overcome those limitations, and where we believe the sketch recognition subfield of corner finding is headed.