Browsing by Subject "protection"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A methodology for performance and compatibility evaluation of an all-digital substation protection system(Texas A&M University, 2007-04-25) Portillo Urdaneta, LeviA power system protection system consists, at least, of an instrument trans- former, a protective device (relay), and a circuit breaker. Conventional instrument transformers bring currents and voltages from power network levels to much lower scaled-down replicas that serve as input signals to protective relays. The relay's function is to measure input signals (or a relationship among them in some cases) and compare them to defined operating characteristic thresholds (relay settings) to quickly decide whether to operate associated circuit breaker(s). Existing protection systems within a substation are based on a hardwired interface between instrument transformers and protective relays. Recent development of electronic instrument transformers and the spread of digital relays allow the development of an all-digital protection system, in which the traditional analog interface has been replaced with a digital signal connected to digital relays through a digital communication link (process bus). Due to their design, conventional instrument transformers introduce distortions to the current and voltage signal replicas. These distortions may cause protective relays to misoperate. On the other hand, non-conventional instrument transformers promise distortion-free replicas, which, in turn, should translate into better relay performance. Replacing hardwired signals with a communication bus also reduces the significant cost associated with copper wiring. An all-digital system should provide compatibility and interoperability so that different electronic instrument transformers can be connected to different digital relays (under a multi-vendor connection) Since the novel all-digital system has never been implemented and/or tested in practice so far, its superior performance needs to be evaluated. This thesis proposes a methodology for performance and compatibility evaluation of an all-digital protection system through application testing. The approach defines the performance indices and compatibility indices as well as the evaluation methodology.Item The Impact of Protection System Failures on Power System Reliability Evaluation(2012-11-05) Jiang, KaiThe reliability of protection systems has emerged as an important topic because protection failures have critical influence on the reliability of power systems. The goal of this research is to develop novel approaches for modeling and analysis of the impact of protection system failures on power system reliability. It is shown that repairable and non-repairable assumptions make a remarkable difference in reliability modeling. A typical all-digital protection system architecture is modeled and numerically analyzed. If an all-digital protection system is indeed repairable but is modeled in a non-repairable manner for analysis, the calculated values of reliability indices could be grossly pessimistic. The smart grid is emerging with the penetration of information-age technologies and the development of the Special Protection System (SPS) will be greatly influenced. A conceptual all-digital SPS architecture is proposed for the future smart grid. Calculation of important reliability indices by the network reduction method and the Markov modeling method is illustrated in detail. Two different Markov models are proposed for reliability evaluation of the 2-out-of-3 voting gates structure in a generation rejection scheme. If the model with consideration of both detectable and undetectable logic gate failures is used as a benchmark, the simple model which only considers detectable failures will significantly overestimate the reliability of the 2-out-of-3 voting gates structure. The two types of protection failures, undesired-tripping mode and fail-to-operate mode are discussed. A complete Markov model for current-carrying components is established and its simplified form is then derived. The simplified model can appropriately describe the overall reliability situation of individual components under the circumstances of complex interactions between components due to protection failures. New concepts of the self-down state and the induced-down state are introduced and utilized to build up the composite unit model. Finally, a two-layer Markov model for power systems with protection failures is proposed. It can quantify the impact of protection failures on power system reliability. Using the developed methodology, we can see that the assumption of perfectly reliable protection can introduce errors in reliability evaluation of power systems.