Browsing by Subject "process"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Developing visual associations through filmmaking(Texas A&M University, 2008-10-10) Shetti, Vishwanand VenkateshAssociations are embedded in many aspects of filmmaking. It is this artist's goal to analyze visual associations in the process and product of an original narrative video piece called Discretion. Character relationships and plot structure are examples of nonconcrete visuals developed in preproduction. Family trees and plot diagrams provide a structural map for the film and are helpful tools to communicate with the cast and crew. Art direction and wardrobe are examples of concrete visuals developed during production. For example, wardrobe with certain colors may be assigned to each character in the film. Editing and compositing allow further development in the postproduction phase. Juxtaposing scenes and imagery results in a more complex web of connections for the viewer to discover. In effect, this thesis is meant to explore the filmmaking process with a special emphasis given to visual associations. In this discussion, the video will be referred to as a film to relate concepts to other films and to the filmmaking process. However, it is important to note that interchanging these words is a common practice that is not acceptable in many industry settings.Item Making the business case for process safety using value-at-risk concepts(Texas A&M University, 2006-10-30) Fang, Jayming ShaAn increasing emphasis on chemical process safety over the last two decades has led to the development and application of powerful risk assessment tools. Hazard analysis and risk evaluation techniques have developed to the point where quantitatively meaningful risks can be calculated for processes and plants. However, the results are typically presented in semi-quantitative ??????ranked list?????? or ??????categorical matrix?????? formats, which are certainly useful but not optimal for making business decisions. A relatively new technique for performing valuation under uncertainty, Value at Risk (VaR), has been developed in the financial world. VaR is a method of evaluating the probability of a gain or loss by a complex venture, by examining the stochastic behavior of its components. We believe that combining quantitative risk assessment techniques with VaR concepts will bridge the gap between engineers and scientists who determine process risk and business leaders and policy makers who evaluate, manage, or regulate risk. We present a few basic examples of the application of VaR to hazard analysis in the chemical process industry. We discover that by using the VaR tool we are able to present data that allows management to make better informed decisions.Item Optimal design and integration of solar systems and fossil fuels for process cogeneration(2009-05-15) Tora, Eman Abdel-Hakim Aly MohamedBecause of the fluctuations in incident solar power, outlet power also changes over time (e.g., on an hourly basis or seasonally). If there is a need for a stable power outlet, there are options towards a steady state output of the system. This work is aimed at the development of systematic design procedures for two solar-based power generation strategies. The first is integration of fossil-fuel with the solar system to provide a compensation effect (power backup to supplement the power main source from solar energy). The second is the use of thermal energy storage (TES) systems to save solar energy in a thermal form and use it when solar input decreases. A common TES configuration is the two-tank system which allows the use of the collector heat transfer fluid (HTF) as a storing medium. For the two tanks, one tank has the hot medium (e.g., a molten salt) and the second has the cold storage media. Specifically, the following design challenges are addressed: 1. What is the optimal mix of energy forms to be supplied to the process? 2. What are the optimal scenario and integration mode to deliver the selected energy forms? How should they be integrated among themselves and with the process? 3. What is the optimal design of the energy systems? 4. What is the optimal dynamic strategy for operating the various energy systems? 5. What is the feasibility of using thermal energy storage to this optimum fossil fuel system? The developed procedure includes gathering and generation of relevant solar and climatic data, modeling of the various components of the solar, fossil, and power generation systems, and optimization of several aspects of the hybrid system. A case study is solved to demonstrate the effectiveness and applicability of the devised procedure.Item Simultaneous process and molecular design/selection through property integration(Texas A&M University, 2007-04-25) Qin, XiaoyunThe overall purpose of this work is to develop systematic methodology for the simultaneous design and selection of processes and molecules (materials). A propertybased approach is used to develop an interface between process and molecular design/selection. In particular, we focus on the problem of designing/selecting materials that are used in the context of a recycle/reuse system of process streams and for energy applications. Fresh and recycled resources (e.g., process streams, biomass, solvents, etc.) are integrated with the process to satisfy property-based constraints for the process units and to optimize the usage of the resources and the design of the process. For molecular design, property operators for mixing streams and group contribution methods (GCM) are used to consistently represent process sources, sinks, and different functional groups on the same property-base. For material selection, property based criteria (e.g., heat rate, high heating value, etc.) are used to bridge the process with material. This consistent representation enables the definition of the optimization problem formulation for product design while taking into consideration the recycle/reuse of process streams. In particular, this dissertation addresses four integrated topics. First, a new graphical approach for material targeting and substitution is presented. This graphical approach offers initial solutions and valuable insights that can be effectively used for conceptual design and for initializing mathematical programming techniques. Second, a mathematical optimization approach is developed along with a decomposition-based global solution procedure for material targeting and substitution using property integration. Third, an implementation approach is developed to synthesize the details of a recycle/reuse process network design based on the targets identified through the graphical and/or the mathematical approaches. Finally, property integration techniques are extended to a broader scope which deals with the lifecycle analysis of biomass utilization for energy generation. A generic model is developed to optimize the types and quantities of the feedstocks used to optimize power generation with biomass-fossil fuel co-fed system. Important issues of biomass growth, harvesting, transportation, processing, and disposal are included. Property-based tracking and constraints are included in the analysis. Also, the issues associated with greenhouse gas (GHG) emissions are incorporated in the analysis. Case studies are solved throughout the dissertation to demonstrate the applicability of the developed procedures.Item Systems integration and analysis of advanced life support technologies(2009-06-02) Nworie, Grace A.Extended missions to space have long been a goal of the National Aeronautics and Space Administration (NASA). Accomplishment of NASA's goal requires the development of systems and tools for sustaining human life for periods of several months to several years. This is the primary objective of NASA's Advanced Life Support (ALS) program. This work contributes directly to NASA efforts for ALS, particularly food production. The objective of this work is to develop a systematic methodology for analyzing and improving or modifying ALS technologies to increase their acceptability for implementation in long-duration space missions. By focusing primarily on the food production systems, it is an aim of this work to refine the procedure for developing and analyzing the ALS technologies. As a result of these efforts, researchers will have at their disposal, a powerful tool for establishing protocols for each technology as well as for modifying each technology to meet the standards for practical applications. To automate the developed methodology and associated calculations, a computer-aided tool has been developed. The following systematic procedures are interrelated and automatically integrated into the computer-aided tool: ? Process configuration, with particular emphasis given to food production (e.g., syrup and flour from sweet potato, starch from sweet potato, breakfast cereal from sweet potato); ? Modeling and analysis for mass and energy tracking and budgeting; ? Mass and energy integration ? Metrics evaluation (e.g., Equivalent System Mass (ESM)). Modeling and analysis is achieved by developing material- and energy-budgeting models. Various forms of mass and energy are tracked through fundamental as well as semiempirical models. Various system alternatives are synthesized and screened using ESM and other metrics. The results of mass, energy and ESM analyses collectively revealed the major consumers of time, equivalent mass, and energy, namely evaporation, condensation, dehydration, drying and extrusion. The targeted processes were subsequently targeted for modifications. In conclusion, this work provides a systematic methodology for transforming non-conventional problems into traditional engineering design problems, a significant contribution to ALS studies.