Browsing by Subject "hydrogen"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Escherichia coli Enhanced Hydrogen Production, Genome-wide Screening for Extracellular DNA, and Influence of GGDEF Proteins on Early Biofilm Formation(2012-02-14) Sanchez Torres, VivianaEscherichia coli is the best characterized bacterium; it grows rapidly, and it is easy to manipulate genetically. An increased knowledge about the physiology of this model organism will facilitate the development of engineered E.coli strains for applications such as production of biofuels and biofilm control. The aims of this work were the application of protein engineering to increase E. coli hydrogen production, the identification of the proteins regulating extracellular DNA production (eDNA), and the evaluation of the effect of the proteins synthesizing the signal 3'-5'-cyclic diguanylic acid (c-di-GMP) on biofilm formation. The Escherichia coli hydrogen production rate was increased 9 fold through random mutagenesis of fhlA. Variant FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) enhances hydrogen production by increasing transcription of the four transcriptional units regulated by FhlA. The amino acid replacements E363G and L14G in FhlA increased hydrogen production 6 fold and 4 fold, respectively. The complete E. coli genome was screened to identify proteins that affect eDNA production. The nlpI, yfeC, and rna mutants increased eDNA production and the hns and rfaD mutants decreased eDNA production. Deletion of nlpI increases eDNA 3 fold while overexpression of nlpI decreases eDNA 16 fold. Global regulator H-NS is required for eDNA with E. coli since deletion of hns abolished eDNA production while overexpression of hns restored eDNA to 70 percent of the wild-type levels. Our results suggest that eDNA production in E. coli is related to direct secretion. Deletions of the genes encoding the diguanylate cyclases YeaI, YedQ, and YfiN increased swimming motility and eDNA as expected for low c-di-GMP levels. However, contrary to the current paradigm, early biofilm formation increased dramatically for the yeaI (30 fold), yedQ (12 fold), and yfiN (18 fold) mutants. Hence, our results suggest that c-di-GMP levels should be reduced for initial biofilm formation because motility is important for initial attachment to a surface.Item Ignition Delay Times of Natural Gas/Hydrogen Blends at Elevated Pressures(2012-10-19) Brower, MarissaApplications of natural gases that contain high levels of hydrogen have become a primary interest in the gas turbine market. For reheat gas turbines, understanding of the ignition delay times of high-hydrogen natural gases is important for two reasons. First, if the ignition delay time is too short, autoignition can occur in the mixer before the primary combustor. Second, the flame in the secondary burner is stabilized by the ignition delay time of the fuel. While the ignition delay times of hydrogen and of the individual hydrocarbons in natural gases can be considered well known, there have been few previous experimental studies into the effects of different levels of hydrogen on the ignition delay times of natural gases at gas turbine conditions. In order to examine the effects of hydrogen content at gas turbine conditions, shock-tube experiments were performed on nine combinations of an L9 matrix. The L9 matrix was developed by varying four factors: natural gas higher-order hydrocarbon content of 0, 18.75, or 37.5%; hydrogen content of the total fuel mixture of 30, 60, or 80%; equivalence ratios of 0.3, 0.5, or 1; and pressures of 1, 10, or 30 atm. Temperatures ranged from 1092 K to 1722 K, and all mixtures were diluted in 90% Ar. Correlations for each combination were developed from the ignition delay times and, using these correlations, a factor sensitivity analysis was performed. It was found that hydrogen played the most significant role in ignition delay time. Pressure was almost as important as hydrogen content, especially as temperature increased. Equivalence ratio was slightly more important than hydrocarbon content of the natural gas, but both were less important than pressure or hydrogen content. Further analysis was performed using ignition delay time calculations for the full matrix of combinations (27 combinations for each natural gas) using a detailed chemical kinetics mechanism. Using these calculations, separate L9 matrices were developed for each natural gas. Correlations from the full matrix and the L9 matrix for each natural gas were found to be almost identical in each case, verifying that a thoughtfully prepared L9 matrix can indeed capture the major effects of an extended matrix.Item Measurement of Turbulent Flame Speeds of Hydrogen and Natural Gas Blends (C1-C5 Alkanes) using a Newly Developed Fan-Stirred Vessel(2014-05-06) Ravi, SankaranarayanaA fan-stirred flame speed vessel was developed at Texas A&M University to conduct turbulent combustion studies. Four high-speed impellers were installed in a central-symmetric pattern at the central circumference of an existing cylindrical laminar flame bomb. The fans generated homogeneous and isotropic turbulence with negligible mean flow (< 10% u?) at the vessel center, and flames up to 12.7 cm in diameter can be measured. The fan designs were optimized using particle image velocimetry inside a Plexiglas model of the vessel. The uniformity of the flow fields was verified using spatial uniformity maps, two-point correlations, and the energy spectra. Additionally, the capability to independently vary the intensity level and the integral length scale was developed. Where the former changed with fan speeds, increasing the blade pitch angle of the impeller decreased the integral length scale. Turbulent flame speeds of fuels that are of topical interest to gas turbines were measured in the fan-stirred bomb. Schlieren photography was used to visualize the flame growth under constant-pressure conditions, and the captured images were processed using an edge-detection code developed in-house. The equivalent-circle-area method was used to determine the flame radii. The shot-to-shot variability was minimal, which resulted in a low experimental scatter close to 10 cm/s. The flame speeds increased with radius due to flame acceleration. Effective turbulent intensity levels were estimated which increased progressively with flame radius. A systematic approach was followed to determine the effects of hydrogen addition on the turbulent displacement speeds of alkanes (C1-C3). Particularly, a natural gas surrogate (NG2) containing large amounts of C2+ hydrocarbons (>20%) was studied. Turbulent displacements were higher for alkane mixtures with Lewis number below unity than those with Le>1. NG2 and methane gave near-identical turbulent displacement speeds consistent with the laminar flame speed trends. Similar trends in displacement speeds were observed for blends of NG2/H_(2) and CH_(4)/H_(2), thus validating the newly established experimental technique. Additionally, turbulent flame speeds of hydrogen and a generic, high-hydrogen-content syngas blend (50:50 H_(2):CO) were studied. The wide range of laminar flame speeds explored herein revealed significantly different flame surface features between the various regimes of turbulent combustion.Item Modeling H2 adsorption in carbon-based structures(2009-05-15) Lamonte, Kevin AnthonyHydrogen storage has been identified as a primary bottleneck in the large-scale implementation of a hydrogen-based economy. Many research efforts are underway to both improve the capacity of existing hydrogen storage systems and develop new systems. One promising area of research is hydrogen physi-sorbed into carbonbased structures such as nanotubes and graphene. Two novel systems consisting of a phthalocyanine salt with a large cation were studied. Ab initio, density functional theory, and molecular dynamics simulations of tetramethylammonium lithium phthalocyanine (TMA-LiPc) and trimethyl-(2-trimethylazaniumylethyl) azanium phthalocyanine (TMA2-Pc) were undertaken to estimate the H2 gas-solid adsorption uptake (wt/wt) as a function of pressure and temperature. For TMA-LiPc, the maximum H2 binding energy was approximately 0.9 kcal/mol for an isolated system and 1.2 kcal/mol for a crystal. H2 adsorption at the optimal inter-layer distance of 8.49 ? ranged from 2.1% to 6.0% (wt/wt) at 300 K, 2.5% to 6.5% at 273K, 3.3% to 7.2% at 236K, 5.2% to 8.6% at 177K, and 10.4% to 11.7% at 77K. At ILD 10 ? H2 adsorption was about 1.5% (wt/wt) higher at all points. For TMA2-Pc, the maximum H2 binding energy was approximately 1.3 kcal/mol for an isolated system and 1.2 kcal/mol for a crystal. H2 adsorption at the optimal inter-layer distance of 8.12 ? ranged from 0.5% to 2.6% (wt/wt) at 300 K, 0.6% to 2.8% at 273K, 0.8% to 3.2% at 236K, 1.4% to 3.9% at 177K, and 4.5% to 6.0% at 77K. At ILD 10 ? H2 adsorption ranged from about 0.1% (wt/wt) at 40 bar to 0.5% higher at 250 bar. The behavior of H2 adsorption for both TMA-LiPc and TMA2-Pc were compared. The adsorbed H2 probability density was compared to pair correlation function data and surfaces of constant binding energy. Regions of relatively high H2 density appear to correlate well with the binding energy, but the total adsorption does not, indicating that the adsorption is driven by factors other than binding energetics. Lithium ion transport in TMA2-Pc was also investigated for suitability as an electrolyte medium for use in lithium ion battery systems.Item The influence of hydrogen gas exposure and low temperature on the tribological characteristics of ti-6al-4v(2009-05-15) Gola, Ryan TravisThis research studies individual and combined effects of hydrogen gas exposure and low temperature on the tribological characteristics of Ti-6Al-4V. Experimental approaches include test system modification and tribological analysis. An existing ballon- disk tribometer was modified to allow liquid nitrogen to be constantly injected into an insulated test chamber to enable testing at low temperature. Twelve 3.8 cm diameter Ti-6Al-4V disks were manufactured and polished, then half were exposed to pure hydrogen gas at elevated temperature and pressure and the remaining disks were untreated. The testing was split in to four groups of three disks based on testing temperature and previous hydrogen exposure. A silicon nitride ball was used for all tests. Each group was tested at two normal loads, 10N and 20N, at the same linear speed. Group 1 was unexposed and tested at room temperature, Group 2 was unexposed and tested at low temperature, Group 3 was exposed and tested at room temperature and Group 4 was exposed and tested at low temperature. Average friction coefficients and the specific wear rate were calculated from the test data. Also high-resolution digital microscope imaging was used to observe and characterize the wear mechanisms of the four groups of samples. Results show that hydrogen exposure facilitated adhesive wear of the surface and that low temperature induced a slip-stick wear mechanism under higher loads, but not at lower loads and regardless of exposure to hydrogen gas. This research opens avenues for future investigation in effects of hydrogen and low temperature embrittlement on the tribological performance of materials. With the increasing interests in hydrogen energy, the present work established a foundation for future study.