# Browsing by Subject "combinatorial optimization"

Now showing 1 - 2 of 2

###### Results Per Page

###### Sort Options

Item A new polyhedral approach to combinatorial designs(Texas A&M University, 2004-09-30) Arambula Mercado, IvetteShow more We consider combinatorial t-design problems as discrete optimization problems. Our motivation is that only a few studies have been done on the use of exact optimization techniques in designs, and that classical methods in design theory have still left many open existence questions. Roughly defined, t-designs are pairs of discrete sets that are related following some strict properties of size, balance, and replication. These highly structured relationships provide optimal solutions to a variety of problems in computer science like error-correcting codes, secure communications, network interconnection, design of hardware; and are applicable to other areas like statistics, scheduling, games, among others. We give a new approach to combinatorial t-designs that is useful in constructing t-designs by polyhedral methods. The first contribution of our work is a new result of equivalence of t-design problems with a graph theory problem. This equivalence leads to a novel integer programming formulation for t-designs, which we call GDP. We analyze the polyhedral properties of GDP and conclude, among other results, the associated polyhedron dimension. We generate new classes of valid inequalities to aim at approximating this integer program by a linear program that has the same optimal solution. Some new classes of valid inequalities are generated as Chv?atal-Gomory cuts, other classes are generated by graph complements and combinatorial arguments, and others are generated by the use of incidence substructures in a t-design. In particular, we found a class of valid inequalities that we call stable-set class that represents an alternative graph equivalence for the problem of finding a t-design. We analyze and give results on the strength of these new classes of valid inequalities. We propose a separation problem and give its integer programming formulation as a maximum (or minimum) edge-weight biclique subgraph problem. We implement a pure cutting-plane algorithm using one of the stronger classes of valid inequalities derived. Several instances of t-designs were solved efficiently by this algorithm at the root node of the search tree. Also, we implement a branch-and-cut algorithm and solve several instances of 2-designs trying different base formulations. Computational results are included.Show more Item Graph theoretic generalizations of clique: optimization and extensions(2009-05-15) Balasundaram, BalabhaskarShow more This dissertation considers graph theoretic generalizations of the maximum clique problem. Models that were originally proposed in social network analysis literature, are investigated from a mathematical programming perspective for the first time. A social network is usually represented by a graph, and cliques were the first models of "tightly knit groups" in social networks, referred to as cohesive subgroups. Cliques are idealized models and their overly restrictive nature motivated the development of clique relaxations that relax different aspects of a clique. Identifying large cohesive subgroups in social networks has traditionally been used in criminal network analysis to study organized crimes such as terrorism, narcotics and money laundering. More recent applications are in clustering and data mining wireless networks, biological networks as well as graph models of databases and the internet. This research has the potential to impact homeland security, bioinformatics, internet research and telecommunication industry among others. The focus of this dissertation is a degree-based relaxation called k-plex. A distance-based relaxation called k-clique and a diameter-based relaxation called k-club are also investigated in this dissertation. We present the first systematic study of the complexity aspects of these problems and application of mathematical programming techniques in solving them. Graph theoretic properties of the models are identified and used in the development of theory and algorithms. Optimization problems associated with the three models are formulated as binary integer programs and the properties of the associated polytopes are investigated. Facets and valid inequalities are identified based on combinatorial arguments. A branch-and-cut framework is designed and implemented to solve the optimization problems exactly. Specialized preprocessing techniques are developed that, in conjunction with the branch-and-cut algorithm, optimally solve the problems on real-life power law graphs, which is a general class of graphs that include social and biological networks. Computational experiments are performed to study the effectiveness of the proposed solution procedures on benchmark instances and real-life instances. The relationship of these models to the classical maximum clique problem is studied, leading to several interesting observations including a new compact integer programming formulation. We also prove new continuous non-linear formulations for the classical maximum independent set problem which maximize continuous functions over the unit hypercube, and characterize its local and global maxima. Finally, clustering and network design extensions of the clique relaxation models are explored.Show more