Browsing by Subject "Sphere Decoding"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item VLSI Implementation of Low Power Reconfigurable MIMO Detector(2009-12-02) Dash, RajballavMultiple Input Multiple Output (MIMO) systems are a key technology for next generation high speed wireless communication standards like 802.11n, WiMax etc. MIMO enables spatial multiplexing to increase channel bandwidth which requires the use of multiple antennas in the receiver and transmitter side. The increase in bandwidth comes at the cost of high silicon complexity of MIMO detectors which result, due to the intricate algorithms required for the separation of these spatially multiplexed streams. Previous implementations of MIMO detector have mainly dealt with the issue of complexity reduction, latency minimization and throughput enhancement. Although, these detectors have successfully mapped algorithms to relatively simpler circuits but still, latency and throughput of these systems need further improvements to meet standard requirements. Additionally, most of these implementations don?t deal with the requirements of reconfigurability of the detector to multiple modulation schemes and different antennae configurations. This necessary requirement provides another dimension to the implementation of MIMO detector and adds to the implementation complexity. This thesis focuses on the efficient VLSI implementation of the MIMO detector with an emphasis on performance and re-configurability to different modulation schemes. MIMO decoding in our detector is based on the fixed sphere decoding algorithm which has been simplified for an effective VLSI implementation without considerably degrading the near optimal bit error rate performance. The regularity of the architecture makes it suitable for a highly parallel and pipelined implementation. The decoder has intrinsic traits for dynamic re-configurability to different modulation and encoding schemes. This detector architecture can be easily tuned for high/low performance requirements with slight degradation/improvement in Bit Error Rate (BER) depending on needs of the overlying application. Additionally, various architectural optimizations like pipelining, parallel processing, hardware scheduling, dynamic voltage and frequency scaling have been explored to improve the performance, energy requirements and re-configurability of the design.