Browsing by Subject "Power adaptation"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Predictive power management for multi-core processors(2010-12) Bircher, William Lloyd; John, Lizy Kurian; Erez, Mattan; Keckler, Steve; Lefurgy, Charles; Moon, Tess; Pan, DavidEnergy consumption by computing systems is rapidly increasing due to the growth of data centers and pervasive computing. In 2006 data center energy usage in the United States reached 61 billion kilowatt-hours (KWh) at an annual cost of 4.5 billion USD [Pl08]. It is projected to reach 100 billion KWh by 2011 at a cost of 7.4 billion USD. The nature of energy usage in these systems provides an opportunity to reduce consumption. Specifically, the power and performance demand of computing systems vary widely in time and across workloads. This has led to the design of dynamically adaptive or power managed systems. At runtime, these systems can be reconfigured to provide optimal performance and power capacity to match workload demand. This causes the system to frequently be over or under provisioned. Similarly, the power demand of the system is difficult to account for. The aggregate power consumption of a system is composed of many heterogeneous systems, each with a unique power consumption characteristic. This research addresses the problem of when to apply dynamic power management in multi-core processors by accounting for and predicting power and performance demand at the core-level. By tracking performance events at the processor core or thread-level, power consumption can be accounted for at each of the major components of the computing system through empirical, power models. This also provides accounting for individual components within a shared resource such as a power plane or top-level cache. This view of the system exposes the fundamental performance and power phase behavior, thus making prediction possible. This dissertation also presents an extensive analysis of complete system power accounting for systems and workloads ranging from servers to desktops and laptops. The analysis leads to the development of a simple, effective prediction scheme for controlling power adaptations. The proposed Periodic Power Phase Predictor (PPPP) identifies patterns of activity in multi-core systems and predicts transitions between activity levels. This predictor is shown to increase performance and reduce power consumption compared to reactive, commercial power management schemes by achieving higher average frequency in active phases and lower average frequency in idle phases.